Journal of Tropical Diseases and Parasitology ›› 2024, Vol. 22 ›› Issue (1): 61-64.doi: 10.3969/j.issn.1672-2302.2024.01.013
• REVIEW • Previous Articles
ZHANG Huihong(), ZHANG Chongxing(
)
Received:
2023-08-28
Online:
2024-02-20
Published:
2024-03-15
Contact:
ZHANG Chongxing, E-mail: CLC Number:
ZHANG Huihong, ZHANG Chongxing. Research progress on the function of intestinal commensal bacteria in mosquitoes[J]. Journal of Tropical Diseases and Parasitology, 2024, 22(1): 61-64.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdbzz.com/EN/10.3969/j.issn.1672-2302.2024.01.013
[1] |
Giraud É, Varet H, Legendre R, et al. Mosquito-bacteria interactions during larval development trigger metabolic changes with carry-over effects on adult fitness[J]. Mol Ecol, 2022, 31(5):1444-1460.
doi: 10.1111/mec.v31.5 URL |
[2] |
Valzania L, Mattee MT, Strand MR, et al. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways[J]. Dev Biol, 2019, 454(1):85-95.
doi: S0012-1606(19)30272-6 pmid: 31153832 |
[3] |
Harrison RE, Yang XS, Eum JH, et al. The mosquito Aedes aegypti requires a gut microbiota for normal fecundity, longevity and vector competence[J]. Commun Biol, 2023, 6(1):1154.
doi: 10.1038/s42003-023-05545-z pmid: 37957247 |
[4] |
Yan JY, Kim CH, Chesser L, et al. Nutritional stress compromises mosquito fitness and antiviral immunity, while enhancing dengue virus infection susceptibility[J]. Commun Biol, 2023, 6(1):1123.
doi: 10.1038/s42003-023-05516-4 pmid: 37932414 |
[5] |
Foster WA. Mosquito sugar feeding and reproductive energetics[J]. Annu Rev Entomol, 1995, 40:443-474.
pmid: 7810991 |
[6] |
Moyes CL, Vontas J, Martins AJ, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans[J]. PLoS Negl Trop Dis, 2017, 11(7):e0005625.
doi: 10.1371/journal.pntd.0005625 URL |
[7] |
Dada N, Lol JC, Benedict AC, et al. Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus[J]. ISME J, 2019, 13(10):2447-2464.
doi: 10.1038/s41396-019-0445-5 pmid: 31171859 |
[8] | 王姗姗, 赵龙玉, 全芯, 等. 疟疾传播阻断疫苗的研究进展[J]. 中国病原生物学杂志, 2022, 17(10):1229-1236. |
[9] |
茅范贞, 张莹舒, 杨友桂, 等. 淋巴丝虫入侵我国风险评估体系的建立及初步应用[J]. 中国媒介生物学及控制杂志, 2023, 34(2):176-181.
doi: 10.11853/j.issn.1003.8280.2023.02.006 |
[10] |
Katak RM, Cintra AM, Burini BC, et al. Biotechnological potential of microorganisms for mosquito population control and reduction in vector competence[J]. Insects, 2023, 14(9):718.
doi: 10.3390/insects14090718 URL |
[11] | 朱莹, 梅启享, 曾悦. 肠道共生菌群在急性胰腺炎中作用的研究进展[J]. 国际消化病杂志, 2021, 41(6):418-420,426. |
[12] | Moszak M, Szulińska M, Bogdański P. You are what you eat-the relationship between diet, microbiota, and metabolic disorders-a review[J]. Nutrients, 2020, 12(4):E1096. |
[13] |
Tawidian P, Coon KL, Jumpponen A, et al. Host-environment interplay shapes fungal diversity in mosquitoes[J]. mSphere, 2021, 6(5):e0064621.
doi: 10.1128/mSphere.00646-21 URL |
[14] |
Seal M, Chatterjee S. Characterizations of larval gut bacteria of Anopheles subpictus grassi (1899) and their role in mosquito development in Hooghly, west Bengal, India[J]. Appl Biochem Biotechnol, 2022, 194(12):6140-6163.
doi: 10.1007/s12010-021-03706-6 |
[15] |
Ranasinghe K, Gunathilaka N, Amarasinghe D, et al. Diversity of midgut bacteria in larvae and females of Aedes aegypti and Aedes albopictus from Gampaha District, Sri Lanka[J]. Parasit Vectors, 2021, 14(1):433.
doi: 10.1186/s13071-021-04900-5 pmid: 34454583 |
[16] |
David MR, Santos LM, Vicente AC, et al. Effects of environment,dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan[J]. Mem Inst Oswaldo Cruz, 2016, 111(9):577-587.
doi: 10.1590/0074-02760160238 URL |
[17] |
Akorli J, Gendrin M, Pels NA, et al. Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana[J]. PLoS One, 2016, 11(6):e0157529.
doi: 10.1371/journal.pone.0157529 URL |
[18] |
Guégan M, Zouache K, Démichel C, et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions[J]. Microbiome, 2018, 6(1):49.
doi: 10.1186/s40168-018-0435-2 pmid: 29554951 |
[19] |
Duguma D, Hall MW, Rugman-Jones P, et al. Developmental succession of the microbiome of Culex mosquitoes[J]. BMC Microbiol, 2015, 15:140.
doi: 10.1186/s12866-015-0475-8 pmid: 26205080 |
[20] |
Juma EO, Allan BF, Kim CH, et al. Effect of life stage and pesticide exposure on the gut microbiota of Aedes albopictus and Culex pipiens L[J]. Sci Rep, 2020, 10(1):9489.
doi: 10.1038/s41598-020-66452-5 |
[21] |
Wang YT, Shen RX, Xing D, et al. Metagenome sequencing reveals the midgut microbiota makeup of Culex pipiens quinquefasciatus and its possible relationship with insecticide resistance[J]. Front Microbiol, 2021, 12:625539.
doi: 10.3389/fmicb.2021.625539 URL |
[22] |
Onyango GM, Bialosuknia MS, Payne FA, et al. Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts[J]. Sci Rep, 2020, 10(1):19135.
doi: 10.1038/s41598-020-76188-x |
[23] |
Muturi EJ, Njoroge TM, Dunlap C, et al. Blood meal source and mixed blood-feeding influence gut bacterial community composition in Aedes aegypti[J]. Parasit Vectors, 2021, 14(1):83.
doi: 10.1186/s13071-021-04579-8 |
[24] | Muturi EJ, Dunlap C, Ramirez JL, et al. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti[J]. FEMS Microbiol Ecol, 2019, 95(1). PMID:30357406. |
[25] |
Oliveira JH, Gonçalves RL, Lara FA, et al. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota[J]. PLoS Pathog, 2011, 7(3):e1001320.
doi: 10.1371/journal.ppat.1001320 URL |
[26] |
Wang Y, Gilbreath TM 3rd, Kukutla P, et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya[J]. PLoS One, 2011, 6(9):e24767.
doi: 10.1371/journal.pone.0024767 URL |
[27] |
Trzebny A, Slodkowicz-Kowalska A, Björkroth J, et al. Microsporidian infection in mosquitoes (Culicidae) is associated with gut microbiome composition and predicted gut microbiome functional content[J]. Microb Ecol, 2023, 85(1):247-263.
doi: 10.1007/s00248-021-01944-z |
[28] |
Short SM, Mongodin EF, MacLeod HJ, et al. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability[J]. PLoS Negl Trop Dis, 2017, 11(7):e0005677.
doi: 10.1371/journal.pntd.0005677 URL |
[29] |
Duron O, Gottlieb Y. Convergence of nutritional symbioses in obligate blood feeders[J]. Trends Parasitol, 2020, 36(10):816-825.
doi: S1471-4922(20)30190-2 pmid: 32811753 |
[30] |
Bai L, Wang LL, Vega-Rodríguez J, et al. A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses[J]. Front Microbiol, 2019, 10:1580.
doi: 10.3389/fmicb.2019.01580 URL |
[31] |
Rodgers FH, Gendrin M, Wyer CAS, et al. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes[J]. PLoS Pathog, 2017, 13(5):e1006391.
doi: 10.1371/journal.ppat.1006391 URL |
[32] |
Hegedus D, Erlandson M, Gillott C, et al. New insights into peritrophic matrix synthesis, architecture, and function[J]. Annu Rev Entomol, 2009, 54:285-302.
doi: 10.1146/annurev.ento.54.110807.090559 pmid: 19067633 |
[33] |
Erlandson MA, Toprak U, Hegedus DD. Role of the peritrophic matrix in insect-pathogen interactions[J]. J Insect Physiol, 2019, 117:103894.
doi: 10.1016/j.jinsphys.2019.103894 URL |
[34] |
Shao L, Devenport M, Jacobs-Lorena M. The peritrophic matrix of hematophagous insects[J]. Arch Insect Biochem Physiol, 2001, 47(2):119-125.
doi: 10.1002/arch.v47:2 URL |
[35] |
Talyuli OAC, Oliveira JHM, Bottino-Rojas V, et al. The Aedes aegypti peritrophic matrix controls arbovirus vector competence through HPx1, a heme-induced peroxidase[J]. PLoS Pathog, 2023, 19(2):e1011149.
doi: 10.1371/journal.ppat.1011149 URL |
[36] |
Terra WR. The origin and functions of the insect peritrophic membrane and peritrophic gel[J]. Arch Insect Biochem Physiol, 2001, 47(2):47-61.
doi: 10.1002/arch.v47:2 URL |
[37] |
Song XM, Wang MF, Dong L, et al. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis[J]. PLoS Pathog, 2018, 14(2):e1006899.
doi: 10.1371/journal.ppat.1006899 URL |
[38] |
Feng YB, Peng YQ, Song XM, et al. Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota[J]. Nat Microbiol, 2022, 7(5):707-715.
doi: 10.1038/s41564-022-01099-8 pmid: 35437328 |
[39] |
Gao H, Bai L, Jiang YM, et al. A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase[J]. Nat Microbiol, 2021, 6(6):806-817.
doi: 10.1038/s41564-021-00899-8 |
[40] |
Gulia-Nuss M, Elliot A, Brown MR, et al. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti[J]. J Insect Physiol, 2015, 82:8-16.
doi: 10.1016/j.jinsphys.2015.08.001 pmid: 26255841 |
[41] |
Coon KL, Brown MR, Strand MR. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae)[J]. Parasit Vectors, 2016, 9(1):375.
doi: 10.1186/s13071-016-1660-9 URL |
[42] |
Ezemuoka LC, Akorli EA, Aboagye-Antwi F, et al. Mosquito midgut Enterobacter cloacae and Serratia marcescens affect the fitness of adult female Anopheles gambiae s. l[J]. PLoS One, 2020, 15(9):e0238931.
doi: 10.1371/journal.pone.0238931 URL |
[43] |
Dekanty A, Romero NM, Bertolin AP, et al. Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia[J]. PLoS Genet, 2010, 6(6):e1000994.
doi: 10.1371/journal.pgen.1000994 URL |
[44] |
Valzania L, Martinson VG, Harrison RE, et al. Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae[J]. PLoS Negl Trop Dis, 2018, 12(7):e0006638.
doi: 10.1371/journal.pntd.0006638 URL |
[45] |
Wang Y, Eum JH, Harrison RE, et al. Riboflavin instability is a key factor underlying the requirement of a gut microbiota for mosquito development[J]. Proc Natl Acad Sci USA, 2021, 118(15):e2101080118.
doi: 10.1073/pnas.2101080118 URL |
[46] |
Omoke D, Kipsum M, Otieno S, et al. Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota[J]. Malar J, 2021, 20(1):77.
doi: 10.1186/s12936-021-03606-4 |
[47] |
Wang HY, Liu HM, Peng H, et al. A symbiotic gut bacterium enhances Aedes albopictus resistance to insecticide[J]. PLoS Negl Trop Dis, 2022, 16(3):e0010208.
doi: 10.1371/journal.pntd.0010208 URL |
[48] |
Dada N, Sheth M, Liebman K, et al. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors[J]. Sci Rep, 2018, 8(1):2084.
doi: 10.1038/s41598-018-20367-4 pmid: 29391526 |
[49] |
Scates SS, O’Neal ST, Anderson TD. Bacteria-mediated modification of insecticide toxicity in the yellow fever mosquito, Aedes aegypti[J]. Pestic Biochem Physiol, 2019, 161:77-85.
doi: S0048-3575(19)30420-1 pmid: 31685200 |
[50] |
Xu LT, Xu SJ, Sun LW, et al. Synergistic action of the gut microbiota in environmental RNA interference in a leaf beetle[J]. Microbiome, 2021, 9(1):98.
doi: 10.1186/s40168-021-01066-1 pmid: 33947455 |
[1] | LIN Siyu, CHEN Fang, LUO Yusi, ZHANG Ke. Genetic branches, virulence genes, and protein functions of the mpox virus lineage B.1 [J]. Journal of Tropical Diseases and Parasitology, 2024, 22(1): 1-6. |
[2] | YUE Wen-fang, LIU Fu-qiang, DUAN Hong-ying, XIA Meng-zhi, CAI Fu-wen, ZHANG Si-yu. Analysis on the epidemiological characteristics of public health emergencies from intestinal infectious in schools in Hunan Province from 2004 to 2022 [J]. Journal of Tropical Diseases and Parasitology, 2023, 21(3): 141-145,154. |
[3] | ZHANG Yi-xin, WANG Long-jiang, LIU Jian-cheng, LIU Ping-ping, WANG Yong-bin, XU Yan, YAN Ge, BU Xiu-qin, ZHANG Dian-bo, LI Yue-jin, ZHANG Ben-guang. Effect of dietary structures on intestinal flora in population infected with Trichuris trichura [J]. Journal of Tropical Diseases and Parasitology, 2023, 21(1): 35-43. |
[4] | ZHANG Yi-xin, ZHANG Ben-guang. Research progress on the interaction between human helminth infection and intestinal flora [J]. Journal of Tropical Diseases and Parasitology, 2022, 20(5): 295-299. |
[5] | LÜ Wen-xiang, LIU Li-juan, GONG Mao-qing. Advances in functions and detection methods of insect intestinal microflora [J]. Journal of Tropical Diseases and Parasitology, 2021, 19(5): 284-. |
[6] | JIANG Shu-na, WU Fang-wei, LI Ben-fu, YAN Xin-liu, LI Jian-xiong, CAI Xuan, PENG Jia, WANG Zheng-qing, ZI Jin-rong, XU Qian, YANG Ya-ming. Disease burden of common intestinal parasitic diseases in Yunnan Province from 2015 to 2019 [J]. Journal of Tropical Diseases and Parasitology, 2021, 19(3): 146-150. |
[7] | NIU Dong-ling, ZHAO Ya-e, ZHANG Wan-yu, GUO Hong-song, HU Li. Construction of prokaryotic expression system of HSP16-1 of Dermatophagoides farinae and functional identification of temperature stress response [J]. Journal of Tropical Diseases and Parasitology, 2021, 19(2): 64-69,81. |
[8] | ZHOU Rui-min, YANG Cheng-yun, LIU Ying, ZHANG Hong-wei. Interpretation of WS/T 634-2018 Detection of intestinal protozoa-Iodine staining smear method [J]. Journal of Tropical Diseases and Parasitology, 2020, 18(3): 142-144. |
[9] | Ji Jingxiu1, ZhangMiao1, Zhang Kexin1, Gao Tingting1, Fu Yuhui1, Li Jiening1, Wang Yuzhen1, Zhao Huiting2, Tian Xifeng3. Investigation on the intestinal parasite infection in 21 species of animals in the wildlife park in Tangshan city [J]. Journal of Tropical Diseases and Parasitology, 2017, 15(1): 28-30,21. |
[10] | Ren Sumin, Tang Zhaowu.. Survey of intestinal nematode infections in Huai’an area from 2011 to 2015 [J]. Journal of Tropical Diseases and Parasitology, 2016, 14(4): 215-218. |
[11] | Zhang Miao1, Shen Jiankun1, Mao Tongyao1, Tian Xifeng2. Investigation on the intestinal parasite infections in dogs and cats in Tangshan city [J]. Journal of Tropical Diseases and Parasitology, 2016, 14(4): 222-224. |
[12] | Li Yuefang, Huang Yan. Effect of Phentolamine on chronic pulmonary heart disease with right ventricular dysfunction [J]. Journal of Tropical Diseases and Parasitology, 2014, 12(3): 166-. |
[13] | Wang Xiaohong,Ye Haima,Wang Yuye.. Changes and clinical significance of platelet parameter in patients with different types of schistosomiasis [J]. Journal of Tropical Diseases and Parasitology, 2014, 12(2): 78-80. |
[14] | Yang Qing, Wu Chuniao, Yu Tingting, Li Linfang, Song Lingying. Clinical analysis of 12 cases of leptospirosis complicated with liver dysfunction [J]. Journal of Tropical Diseases and Parasitology, 2013, 11(3): 137-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||