[1] |
World Health Organization. Global Tuberculosis Report 2022.[R/OL]. (2022-2-27) [2023-2-10]. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022.
|
[2] |
Molina-Moya B, Agonafir M, Blanco S, et al. Microbead-based spoligotyping of Mycobacterium tuberculosis from Ziehl-Neelsen-stained microscopy preparations in Ethiopia[J]. Sci Rep, 2018, 8(1):3987.
doi: 10.1038/s41598-018-22071-9
pmid: 29507363
|
[3] |
Palomino JC, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis[J]. Antibiotics (Basel), 2014, 3(3):317-340.
|
[4] |
梁小烟, 梁大斌, 黄敏莹, 等. 2013—2017年广西流动人口肺结核流行特征分析[J]. 现代预防医学, 2019, 46(15):2708-2712.
|
[5] |
张洁, 任怡宣, 潘丽萍, 等. 全基因组测序在结核分枝杆菌研究中的应用[J]. 中国防痨杂志, 2020, 42(7):734-740.
|
[6] |
Ko DH, Lee EJ, Lee SK, et al. Application of next-generation sequencing to detect variants of drug-resistant Mycobacterium tuberculosis: genotype-phenotype correlation[J]. Ann Clin Microbiol Antimicrob, 2019, 18(1):2.
doi: 10.1186/s12941-018-0300-y
|
[7] |
蓝如束, 叶婧, 罗丹, 等. 基于PCR熔解曲线技术的结核分枝杆菌Spo1igotyping基因分型的临床应用研究[J]. 中国人兽共患病学报, 2021, 37(4):285-291,338.
|
[8] |
洪创跃, 杨婷婷, 李金莉, 等. 深圳市耐多药结核分枝杆菌耐药基因突变特征分析[J]. 中国防痨杂志, 2020, 42(6):583-589.
|
[9] |
Liu QY, Luo T, Dong XR, et al. Genetic features of Mycobacterium tuberculosis modern Beijing sublineage[J]. Emerg Microbes Infect, 2016, 5(2):e14.
|
[10] |
Yang TT, Gan MY, Liu QY, et al. SAM-TB: a whole genome sequencing data analysis website for detection of Mycobacterium tuberculosis drug resistance and transmission[J]. Brief Bioinform, 2022, 23(2):bbac030.
|
[11] |
Walker TM, Kohl TA, Dmar SV, et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study[J]. Lancet Infect Dis, 2015, 15(10):1193-1202.
doi: 10.1016/S1473-3099(15)00062-6
URL
|
[12] |
Rivière E, Heupink TH, Ismail N, et al. Capacity building for whole genome sequencing of Mycobacterium tuberculosis and bioinformatics in high TB burden countries[J]. Brief Bioinform, 2021, 22(4):bbaa246.
|
[13] |
Yang CG, Luo T, Shen X, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation[J]. Lancet Infect Dis, 2017, 17(3):275-284.
doi: 10.1016/S1473-3099(16)30418-2
URL
|
[14] |
Merker M, Blin C, Mona S, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage[J]. Nat Genet, 2015, 47(3):242-249.
doi: 10.1038/ng.3195
|
[15] |
Ngabonziza JCS, Loiseau C, Marceau M, et al. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region[J]. Nat Commun, 2020, 11(1):2917.
doi: 10.1038/s41467-020-16626-6
pmid: 32518235
|
[16] |
Liu QY, Ma AJ, Wei LH, et al. China's tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis[J]. Nat Ecol Evol, 2018, 2(12):1982-1992.
doi: 10.1038/s41559-018-0680-6
|
[17] |
Stucki D, Brites D, Jeljeli L, et al. lineage 4 comprises globally distributed and geographically restricted sublineages[J]. Nat Genet, 2016, 48(12):1535-1543.
doi: 10.1038/ng.3704
pmid: 27798628
|
[18] |
Ni XM, Zhu CD, Li Q, et al. Epidemiology characteristics of the clonal complexes of Mycobacterium tuberculosis Lineage 4 in China[J]. Infection,Genetics and Evolution, 2020, 84:104363.
|
[19] |
Netikul T, Palittapongarnpim P, Thawornwattana Y, et al. Estimation of the global burden of Mycobacterium tuberculosis lineage 1[J]. Infect Genet Evol, 2021, 91:104802.
|
[20] |
Shuaib YA, Utpatel C, Kohl TA, et al. Origin and global expansion of Mycobacterium tuberculosis complex lineage 3[J]. Genes (Basel), 2022, 13(6):990.
doi: 10.3390/genes13060990
URL
|
[21] |
龙茜, 林玫, 蓝如束, 等. 广西壮族自治区边境与非边境地区耐药肺结核疫情及其影响因素[J]. 中国防痨杂志, 2019, 41(5):564-568.
|
[22] |
韦珍. 结核分枝杆菌临床分离株基因分型与耐药性的检测[D]. 长春: 吉林大学, 2015.
|
[23] |
Hung NV, Ando H, Thuy TT, et al. Clonal expansion of Mycobacterium tuberculosis isolates and coexisting drug resistance in patients newly diagnosed with pulmonary tuberculosis in Hanoi,Vietnam[J]. BMC Res Notes, 2013, 6:444.
doi: 10.1186/1756-0500-6-444
|
[24] |
蒋明霞, 王兆芬, 马斌忠, 等. 高海拔地区结核分枝杆菌耐药特征研究[J]. 中国人兽共患病学报, 2022, 38(3):203-209,216.
|
[25] |
黄银燕, 吴亦斐, 贾庆军, 等. 杭州市1 731株结核分枝杆菌耐药状况分析[J]. 中国人兽共患病学报, 2022, 38(5):410-417.
|
[26] |
Sethi S, Hao YH, Brown SM, et al. Elucidation of drug resistance mutations in Mycobacterium tuberculosis isolates from North India by whole-genome sequencing[J]. J Glob Antimicrob Resist, 2020, 20:11-15.
doi: 10.1016/j.jgar.2019.05.019
URL
|
[27] |
Kozhamkulov U, Akhmetova A, Rakhimova S, et al. Molecular characterization of rifampicin-and isoniazid-resistant Mycobacterium tuberculosis strains isolated in Kazakhstan[J]. Jpn J Infect Dis, 2011, 64(3):253-255.
pmid: 21617314
|
[28] |
Motavaf B, Keshavarz N, Ghorbanian F, et al. Detection of genomic mutations in katG and rpoB genes among multidrug-resistant Mycobacterium tuberculosis isolates from Tehran,Iran[J]. New Microbes New Infect, 2021, 41:100879.
|
[29] |
Jian JY, Yang XY, Yang J, et al. Evaluation of the GenoType MTBDRplus and MTBDRsl for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Beijing,China[J]. Infect Drug Resist, 2018, 11:1627-1634.
doi: 10.2147/IDR
URL
|
[30] |
周奉, 李同心, 杨松, 等. 结核病短程治疗方案的研究进展[J]. 中国防痨杂志, 2023, 45(3):311-317.
|
[31] |
Campbell EA, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase[J]. Cell, 2001, 104(6):901-912.
doi: 10.1016/s0092-8674(01)00286-0
pmid: 11290327
|
[32] |
Zeng MC, Jia QJ, Tang LM. rpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis isolates from rural areas of Zhejiang,China[J]. J Int Med Res, 2021, 49(3):300060521997596.
|