[1] |
孟凤霞, 靳建超, 陈云, 等. 我国淡色库蚊/致倦库蚊对常用化学杀虫剂的抗药性[J]. 中国媒介生物学及控制杂志, 2011, 22(6):517-520,528.
|
[2] |
Liu HM, Yang PP, Cheng P, et al. Resistance level of mosquito species (Diptera: Culicidae) from Shandong Province,China[J]. Int J Insect Sci, 2015,7:47-52.
|
[3] |
Liu HM, Xie LH, Cheng P, et al. Trends in insecticide resistance in Culex pipiens pallens over 20 years in Shandong, China[J]. Parasit Vectors, 2019, 12(1):167.
|
[4] |
王伟, 宋富成, 姜洪荣, 等. 2019年青岛市居民区淡色库蚊幼虫对5种杀虫剂的抗性调查[J]. 中华卫生杀虫药械, 2020, 26(6):585-586.
|
[5] |
Nkya TE, Akhouayri I, Kisinza W, et al. Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects[J]. Insect Biochem Mol Biol, 2013, 43(4):407-416.
|
[6] |
Hemingway J, Hawkes NJ, McCarroll L, et al. The molecular basis of insecticide resistance in mosquitoes[J]. Insect Biochem Mol Biol, 2004, 34(7):653-665.
|
[7] |
Fonseca I, Quiñones ML. Resistencia a insecticidas en mosquitos (Diptera: Culicidae): mecanismos,detección y vigilancia en salud pública[J]. Rev Colomb Entomol, 2005, 31(2):107-115.
|
[8] |
汤星星, 黄晓丹, 王文倩, 等. 2023年山东省微山湖流域淡色库蚊抗药性调查[J]. 中华卫生杀虫药械, 2024, 30(2):118-121.
|
[9] |
李许桑妮, 闫冀焕, 陈翰林, 等. 蚊虫转录组学研究进展[J]. 寄生虫与医学昆虫学报, 2019, 26(3):199-208.
|
[10] |
吴恙, 周腾飞, 赖泽钿, 等. 蚊虫组学研究进展[J]. 环境昆虫学报, 2020, 42(4):789-797.
|
[11] |
刘福岩, 张倩, 郭秀霞, 等. 利用蛋白组学解析淡色库蚊对氯氰菊酯的抗性机制[J]. 中国血吸虫病防治杂志, 2021, 33(2):189-194.
|
[12] |
Zhang CX, Shi QQ, Li T, et al. Comparative proteomics reveals mechanisms that underlie insecticide resistance in Culex pipiens pallens Coquillett[J]. PLoS Negl Trop Dis, 2021, 15(3):e0009237.
|
[13] |
Zhang CX, Guo XX, Li T, et al. New insights into cypermethrin insecticide resistance mechanisms of Culex pipiens pallens by proteome analysis[J]. Pest Manag Sci, 2022, 78(11):4579-4588.
|
[14] |
Zhou YH, Badgett MJ, Orlando R, et al. Proteomics reveals localization of cuticular proteins in Anopheles gambiae[J]. Insect Biochem Mol Biol, 2019,104:91-105.
|
[15] |
Liu WJ, Cheng P, An S, et al. Chromosome-level assembly of Culex pipiens molestus and improved reference genome of Culex pipiens pallens (Culicidae, Diptera)[J]. Mol Ecol Resour, 2023, 23(2):486-498.
|
[16] |
Wang WJ, Lv Y, Fang FJ, et al. Identification of proteins associated with pyrethroid resistance by iTRAQ-based quantitative proteomic analysis in Culex pipiens pallens[J]. Parasit Vectors, 2015,8:95.
|
[17] |
Stone BF, Brown AW. Mechanisms of resistance to fenthion in Culex pipiens fatigans Wied[J]. Bull World Health Organ, 1969, 40(3):401-408.
|
[18] |
Cornman RS. Molecular evolution of Drosophila cuticular protein genes[J]. PLoS One, 2009, 4(12):e8345.
|
[19] |
Vontas J, David JP, Nikou D, et al. Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization[J]. Insect Mol Biol, 2007, 16(3):315-324.
pmid: 17433071
|
[20] |
Nkya TE, Poupardin R, Laporte F, et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions[J]. Parasit Vectors, 2014,7:480.
|
[21] |
Gregory R, Darby AC, Irving H, et al. A de novo expression profiling of Anopheles funestus, malaria vector in Africa, using 454 pyrosequencing[J]. PLoS One, 2011, 6(2):e17418.
|
[22] |
Huang Y, Guo Q, Sun XH, et al. Culex pipiens pallens cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix[J]. Parasit Vectors, 2018, 11(1):6.
doi: 10.1186/s13071-017-2567-9
pmid: 29301564
|
[23] |
Yahouédo GA, Chandre F, Rossignol M, et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae[J]. Sci Rep, 2017, 7(1):11091.
doi: 10.1038/s41598-017-11357-z
pmid: 28894186
|
[24] |
Balabanidou V, Kefi M, Aivaliotis M, et al. Mosquitoes cloak their legs to resist insecticides[J]. Proc Biol Sci,2019, 286(1907):20191091.
|
[25] |
Awolola TS, Oduola OA, Strode C, et al. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria[J]. Trans R Soc Trop Med Hyg, 2009, 103(11):1139-1145.
|
[26] |
Sun XL, Guo JX, Ye WY, et al. Cuticle genes CpCPR63 and CpCPR47 may confer resistance to deltamethrin in Culex pipiens pallens[J]. Parasitol Res, 2017, 116(8):2175-2179.
|
[27] |
Kasai S, Komagata O, Itokawa K, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism[J]. PLoS Negl Trop Dis, 2014, 8(6):e2948.
|
[28] |
Apperson CS, Georghiou GP. Mechanisms of resistance to organophosphorus insecticides in Culex tarsalis[J]. J Econ Entomol, 1975, 68(2):153-157.
pmid: 1127166
|
[29] |
Balabanidou V, Kampouraki A, MacLean M, et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2016, 113(33):9268-9273.
doi: 10.1073/pnas.1608295113
pmid: 27439866
|
[30] |
Vannini L, Reed TW, Willis JH. Temporal and spatial expression of cuticular proteins of Anopheles gambiae implicated in insecticide resistance or differentiation of M/S incipient species[J]. Parasit Vectors, 2014,7:24.
|
[31] |
Andersen SO, Hojrup P, Roepstorff P. Insect cuticular proteins[J]. Insect Biochem Mol Biol, 1995, 25(2):153-176.
|
[32] |
Koganemaru R, Miller DM, Adelman ZN. Robust cuticular penetration resistance in the common bed bug (Cimex lectularius L.) correlates with increased steady-state transcript levels of CPR-type cuticle protein genes[J]. Pestic Biochem Physiol, 2013, 106(3):190-197.
|
[33] |
Karouzou MV, Spyropoulos Y, Iconomidou VA, et al. Drosophila cuticular proteins with the R&R consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences[J]. Insect Biochem Mol Biol, 2007, 37(8):754-760.
|