热带病与寄生虫学 ›› 2024, Vol. 22 ›› Issue (6): 321-327.doi: 10.20199/j.issn.1672-2302.2024.06.001
收稿日期:
2024-09-18
出版日期:
2024-12-20
发布日期:
2025-01-23
通信作者:
杜春红,dch6890728@163.com
作者简介:
杜超博,男,硕士在读,研究方向:自然疫源性疾病防控。E-mail: 基金资助:
DU Chaobo1,2(), SUN Yi3, JIANG Jiafu3, DU Chunhong2(
)
Received:
2024-09-18
Online:
2024-12-20
Published:
2025-01-23
Contact:
DU Chunhong,dch6890728@163.com
摘要:
蜱是一种专性吸血的体表寄生虫,同时也是多种病原体的传播媒介。血蜱属作为硬蜱科第二大属,其种类丰富、分布广泛、携带病原体众多,具有重要的公共卫生意义,是备受学界关注的蜱类。本文重点就近年来国内外血蜱种类、分布以及携带病原体等方面的研究进展进行综述,为蜱传疾病的研究和防控提供参考。
中图分类号:
杜超博, 孙毅, 江佳富, 杜春红. 血蜱种类、分布及其携带病原体的研究进展[J]. 热带病与寄生虫学, 2024, 22(6): 321-327.
DU Chaobo, SUN Yi, JIANG Jiafu, DU Chunhong. Research progress on the species, distribution and pathogens carried of Haemaphysalis[J]. Journal of Tropical Diseases and Parasitology, 2024, 22(6): 321-327.
表1
长角血蜱可携带的病原体种类
分类 | 科 | 种类 |
---|---|---|
细菌性 病原体 | 螺旋体 | 阿弗西尼疏螺旋体(Borrelia afzelii) [ |
立克次体 | 加拿大立克次体(Rickettsiae canadensis)[ | |
无形体 | 牛无形体(Anaplasmataceae bovis)[ | |
柯克斯体 | 贝纳柯克斯体(Coxiella burnetii)[ | |
布鲁氏菌 | 羊布鲁氏菌(Brucellaceae melitensis)[ | |
巴尔通体 | 汉赛巴尔通体(Bartonella henselae)[ | |
苍白杆菌 | 鹰嘴豆苍白杆菌(Ochrobactrum ciceri)[ | |
弗朗西斯氏菌 | 土拉弗朗西斯菌(Francisella tularensis)[ | |
原虫 | 巴贝虫 | 卵形巴贝虫(Babesia ovata)[ |
泰勒虫 | 吕氏泰勒虫(Theileria luwenshuni)[ | |
肝簇虫 | 猫肝簇虫(Hepatozoon felis)[ | |
弓形虫 | 刚地弓形虫(Toxoplasma gondii)[ | |
病毒 | 黄病毒 | 蜱传脑炎病毒(Tick-borne encephalitis virus)[ |
白纤病毒 | 大别班达病毒(Bandavirus dabieense)[ | |
副黏病毒 | 荆门病毒(Parahenipavirus jingmenense)[ | |
内罗病毒 | 内罗毕绵羊病病毒(Orthonairovirus nairobiense)[ | |
细小病毒、沙粒病毒等其他 | 博卡病毒(Bocavirus)[ |
表2
嗜群血蜱可携带的病原体种类
分类 | 科 | 种类 |
---|---|---|
细菌性病原体 | 螺旋体科 | 阿弗西尼疏螺旋体(Borrelia afzelii ) [ |
立克次体 | 康氏立克次体(Rickettsiae conorii)[ | |
无形体 | 牛无形体(Anaplasmataceae bovis)[ | |
柯克斯体 | 贝纳柯克斯体(Coxiella burnetii)[ | |
弗朗西斯氏菌 | 土拉弗朗西斯菌(Francisella tularensis) [ | |
其他 | 痤疮皮肤杆菌(Cutibacterium acnes)[ | |
原虫 | 巴贝虫 | 双芽巴贝虫(Babesia bigemina)[ |
泰勒虫 | Theileria sp. ZS TO4[ | |
病毒 | 内罗病毒 | 松岭病毒(Orthonairovirus songlingense)[ |
黄病毒 | 蜱传脑炎病毒(Tick-borne encephalitis virus)[ | |
白纤病毒 | 大别班达病毒(Bandavirus dabieense)[ | |
副黏病毒、疱疹病毒等 | 荆门病毒(Parahenipavirus jingmenense)[ |
[1] | 刘敬泽, 杨晓军. 蜱类学[M]. 北京: 中国林业出版社, 2013:147-162. |
[2] |
Rochlin I, Toledo A. Emerging tick-borne pathogens of public health importance: a mini-review[J]. J Med Microbiol, 2020, 69(6):781-791.
doi: 10.1099/jmm.0.001206 pmid: 32478654 |
[3] | 陈泽. 中国蜱类的系统分类及两种硬蜱的生物学特性分析[D]. 石家庄: 河北师范大学, 2010. |
[4] | 靳尚. 西藏血蜱超微形态和生活史的研究[D]. 石家庄: 河北师范大学, 2017. |
[5] | Liu J, Han XY, Ye RZ, et al. An integrated data analysis reveals distribution, hosts, and pathogen diversity of Haemaphysalis concinna[J]. Parasit Vectors, 2024, 17(1):92. |
[6] |
Zhao L, Li J, Cui XM, et al. Distribution of Haemaphysalis longicornis and associated pathogens: analysis of pooled data from a China field survey and global published data[J]. Lancet Planet Health, 2020, 4(8):e320-e329.
doi: 10.1016/S2542-5196(20)30145-5 pmid: 32800150 |
[7] | Chen Z, Yang XJ, Bu FJ, et al. Morphological, biological and molecular characteristics of bisexual and parthenogenetic Haemaphysalis longicornis[J]. Vet Parasitol, 2012, 189(2/3/4):344-352. |
[8] | Estrada-Peña A, Gray JS, Kahl O, et al. Research on the ecology of ticks and tick-borne pathogens-methodological principles and caveats[J]. Front Cell Infect Microbiol, 2013, 3:29. |
[9] | 赵国平. 中国蜱类空间分布及其危害预测[D]. 北京: 军事科学院, 2018. |
[10] | 陈泽, 刘敬泽. 蜱分类学研究进展[J]. 应用昆虫学报, 2020, 57(5):1009-1045. |
[11] | Du CH, Sun Y, Xu RM, et al. Description of Haemaphysalis (Alloceraea) Kolonini sp. nov., a new species in subgenus Alloceraea Schulze (Ixodidae: Haemaphysalis) in China[J]. Acta Parasitol, 2018, 63(4):678-691. |
[12] |
Apanaskevich DA, Tomlinson JA. Description of four new species of Haemaphysalis Koch, 1844 (Acari: Ixodidae) from the H. (Rhipistoma) spinulosa subgroup, parasites of carnivores and rodents in Africa[J]. Syst Parasitol, 2019, 96(8):625-657.
doi: 10.1007/s11230-019-09875-7 pmid: 31441012 |
[13] |
Apanaskevich DA, Goodman SM. Description of a new species of Haemaphysalis Koch, 1844 (Acari: Ixodidae) from the H. (Rhipistoma) asiatica subgroup, parasite of an endemic Malagasy carnivoran (Carnivora: Eupleridae)[J]. Syst Parasitol, 2020, 97(6):591-599.
doi: 10.1007/s11230-020-09943-3 pmid: 33063166 |
[14] |
Apanaskevich DA, Tomlinson JA. Description of two new species of Haemaphysalis Koch, 1844 (Acari: Ixodidae) from the H. (Rhipistoma) spinulosa subgroup, parasites of carnivores and other mammals in Africa[J]. Syst Parasitol, 2020, 97(6):601-621.
doi: 10.1007/s11230-020-09954-0 pmid: 33190202 |
[15] | 孙毅, 许荣满, 魏川川. 中国血蜱属研究(蜱螨目:硬蜱科)(Ixodoidea, Ixodidae):系统分类与检索[J]. 寄生虫与医学昆虫学报, 2011, 18(4):251-258. |
[16] | Fang LZ, Xiao X, Lei SC, et al. Haemaphysalis flava ticks as a competent vector of severe fever with thrombocytopenia syndrome virus[J]. Ticks Tick Borne Dis, 2023, 14(2):102100. |
[17] | Soundararajan C, Nagarajan K, Muthukrishnan S, et al. Tick infestation on sheep, goat, horse and wild hare in Tamil Nadu[J]. J Parasit Dis, 2018, 42(1):127-129. |
[18] | Khoo JJ, Lim FS, Chen F, et al. Coxiella Detection in Ticks from Wildlife and Livestock in Malaysia[J]. Vector Borne Zoonotic Dis, 2016, 16(12):744-751. |
[19] |
Jia N, Wang J, Shi W, et al. Haemaphysalis longicornis[J]. Trends Genet, 2021, 37(3):292-293.
doi: 10.1016/j.tig.2020.11.008 pmid: 33353761 |
[20] | Dehhaghi M, Panahi HKS, Holmes EC, et al. Human Tick-Borne Diseases in Australia[J]. Front Cell Infect Microbiol, 2019, 9:3. |
[21] | Egan SL, Loh SM, Banks PB, et al. Bacterial community profiling highlights complex diversity and novel organisms in wildlife ticks[J]. Ticks Tick Borne Dis, 2020, 11(3):101407. |
[22] |
Thompson AT, Dominguez K, Cleveland CA, et al. Molecular Characterization of Haemaphysalis Species and a Molecular Genetic Key for the Identification of Haemaphysalis of North America[J]. Front Vet Sci, 2020, 7:141.
doi: 10.3389/fvets.2020.00141 pmid: 32232062 |
[23] | Egizi A, Maestas LP. Where have all the grouse ticks gone? Apparent decline in collections of Haemaphysalis chordeilis Packard[J]. Int J Parasitol Parasites Wildl, 2022, 19:323-329. |
[24] |
Guglielmone AA, Beati L, Barros-Battesti DM, et al. Ticks (Ixodidae) on humans in South America[J]. Exp Appl Acarol, 2006, 40(2):83-100.
pmid: 17103085 |
[25] | Perveen N, Muzaffar SB, Al-Deeb MA. Ticks and Tick-Borne Diseases of Livestock in the Middle East and North Africa: A Review[J]. Insects, 2021, 12(1):83. |
[26] | Ledwaba MB, Nozipho K, Tembe D, et al. Distribution and prevalence of ticks and tick-borne pathogens of wild animals in South Africa: A systematic review[J]. Curr Res Parasitol Vector Borne Dis, 2022, 2:100088. |
[27] | Hornok S, Takács N, Kontschán J, et al. Diversity of Haemaphysalis-associated piroplasms of ruminants in Central-Eastern Europe,Hungary[J]. Parasit Vectors, 2015, 8:627. |
[28] | Ergunay K, Bourke BP, Reinbold-Wasson DD, et al. The expanding range of emerging tick-borne viruses in Eastern Europe and the Black Sea Region[J]. Sci Rep, 2023, 13(1):19824. |
[29] | Rubel F, Brugger K. Maps of ticks (Acari: Argasidae,Ixodidae) for Austria and South Tyrol, Italy[J]. Exp Appl Acarol, 2022, 86(2):211-233. |
[30] | Buczek A, Buczek W, Bartosik K, et al. Ixodiphagus hookeri wasps (Hymenoptera: Encyrtidae) in two sympatric tick species Ixodes ricinus and Haemaphysalis concinna (Ixodida: Ixodidae) in the Slovak Karst (Slovakia): ecological and biological considerations[J]. Sci Rep, 2021, 11(1):11310. |
[31] | Sameroff S, Tokarz R, Vucelja M, et al. Virome of Ixodes ricinus, Dermacentor reticulatus, and Haemaphysalis concinna Ticks from Croatia[J]. Viruses, 2022, 14(5):929. |
[32] | 杨晓军, 陈泽, 刘敬泽. 中国蜱类的有效属和有效种[J]. 河北师范大学学报(自然科学版), 2008, 32(4):529-533. |
[33] | 唐莉娟, 王远志, 刘丹, 等. 新疆主要蜱种分布及蜱传病原的研究进展[J]. 中国动物传染病学报, 2022, 30(4):211-216. |
[34] | 于莲琪, 张本光, 盛兆安. 山东主要蜱种分布现状及蜱携病原的研究进展[J]. 中华卫生杀虫药械, 2024, 30(2):185-190. |
[35] | 潘亮. 福建省蜱类及蜱传疾病概况[J]. 海峡预防医学杂志, 2011, 17(2):21-23. |
[36] | 郭凯飞. 云南省蜱的地理分布和区系分析[D]. 昆明: 西南林业大学, 2015. |
[37] | Rainey T, Occi JL, Robbins RG, et al. Discovery of Haemaphysalis longicornis (Ixodida: Ixodidae) Parasitizing a Sheep in New Jersey, United States[J]. J Med Entomol, 2018, 55(3):757-759. |
[38] | Kiewra D, Czułowska A, Dyczko D, et al. First record of Haemaphysalis concinna (Acari: Ixodidae) in Lower Silesia, SW Poland[J]. Exp Appl Acarol, 2019, 77(3):449-454. |
[39] | Paulauskas A, Sakalauskas P, Kaminskienė E, et al. First record of Haemaphysalis concinna (Acari: Ixodidae) in Lithuania[J]. Ticks Tick Borne Dis, 2020, 11(5):101460. |
[40] | Tufts DM, Diuk-Wasser MA. First hemispheric report of invasive tick species Haemaphysalis punctata, first state report of Haemaphysalis longicornis, and range expansion of native tick species in Rhode Island, USA[J]. Parasit Vectors, 2021, 14(1):394. |
[41] |
Zhang X, Zhao CY, Cheng CY, et al. Rapid Spread of Severe Fever with Thrombocytopenia Syndrome Virus by Parthenogenetic Asian Longhorned Ticks[J]. Emerg Infect Dis, 2022, 28(2):363-372.
doi: 10.3201/eid2802.211532 pmid: 35075994 |
[42] |
Hornok S, Flaisz B, Takács N, et al. Bird ticks in Hungary reflect western, southern, eastern flyway connections and two genetic lineages of Ixodes frontalis and Haemaphysalis concinna[J]. Parasit Vectors, 2016, 9:101.
doi: 10.1186/s13071-016-1365-0 pmid: 26912331 |
[43] | Yun Y, Heo ST, Kim G, et al. Phylogenetic Analysis of Severe Fever with Thrombocytopenia Syndrome Virus in South Korea and Migratory Bird Routes Between China, South Korea, and Japan[J]. Am J Trop Med Hyg, 2015, 93(3):468-474. |
[44] | Buczek AM, Buczek W, Buczek A, et al. The Potential Role of Migratory Birds in the Rapid Spread of Ticks and Tick-Borne Pathogens in the Changing Climatic and Environmental Conditions in Europe[J]. Int J Environ Res Public Health, 2020, 17(6):2117. |
[45] |
王艳华, 毛玲玲, 彭遥, 等. 在辽宁省长角血蜱中检测出土拉弗朗西斯菌[J]. 中国媒介生物学及控制杂志, 2016, 27(6):529-532.
doi: 10.11853/j.issn.1003.8280.2016.06.001 |
[46] | Wang YH, Mao LL, Sun YW, et al. A Novel Francisella-Like Endosymbiont in Haemaphysalis longicornis and Hyalomma asiaticum, China[J]. Vector Borne Zoonotic Dis, 2018, 18(12):669-676. |
[47] | Teng ZQ, Shi Y, Zhao N, et al. Molecular Detection of Tick-Borne Bacterial and Potozoan Pathogens in Haemaphysalis longicornis (Acari: Ixodidae) Ticks from Free-Ranging Domestic Sheep in Hebei Province, China[J]. Pathogens, 2023, 12(6):763. |
[48] | Lu M, Meng C, Li YL, et al. Rickettsia sp. and Anaplasma spp. in Haemaphysalis longicornis from Shandong Province of China, with evidence of a novel species "Candidatus Anaplasma Shandongensis"[J]. Ticks Tick Borne Dis, 2023, 14(1):102082. |
[49] | Li YQ, Luo JX, Liu ZJ, et al. Experimental transmission of Theileria sp. (China 1) infective for small ruminants by Haemaphysalis longicornis and Haemaphysalis qinghaiensis[J]. Parasitol Res, 2007, 101(3):533-538. |
[50] |
Zhao CY, Zhang X, Si XX, et al. Hedgehogs as Amplifying Hosts of Severe Fever with Thrombocytopenia Syndrome Virus, China[J]. Emerg Infect Dis, 2022, 28(12):2491-2499.
doi: 10.3201/eid2812.220668 pmid: 36417938 |
[51] | Raney WR, Herslebs EJ, Langohr IM, et al. Horizontal and Vertical Transmission of Powassan Virus by the Invasive Asian Longhorned Tick, Haemaphysalis longicornis, Under Laboratory Conditions[J]. Front Cell Infect Microbiol, 2022, 12:923914. |
[52] |
Higuchi S, Simomura S, Yoshida H, et al. Development of Babesia gibsoni in the gut epithelium of the tick, Haemaphysalis longicornis[J]. J Vet Med Sci, 1991, 53(1):129-131.
pmid: 1830766 |
[53] |
Higuchi S, Oya H, Hoshi F, et al. Development of Babesia ovata in the salivary glands of the nymphal tick, Haemaphysalis longicornis[J]. J Vet Med Sci, 1994, 56(1):207-209.
pmid: 8204758 |
[54] | Guan G, Moreau E, Liu J, et al. Babesia sp. BQ1 (Lintan): molecular evidence of experimental transmission to sheep by Haemaphysalis qinghaiensis and Haemaphysalis longicornis[J]. Parasitol Int, 2010, 59(2):265-267. |
[55] | Maeda H, Hatta T, Abdul Alim M, et al. Initial development of Babesia ovata in the tick midgut[J]. Vet Parasitol, 2017, 233:39-42. |
[56] | Zhuang L, Sun Y, Cui XM, et al. Transmission of Severe Fever with Thrombocytopenia Syndrome Virus by Haemaphysalis longicornis Ticks,China[J]. Emerg Infect Dis, 2018, 24(5):868-871. |
[57] | Ren SG, Zhang BW, Xue XM, et al. Salivary gland proteome analysis of developing adult female Haemaphysalis longicornis ticks: molecular motor and TCA cycle-related proteins play an important role throughout development[J]. Parasit Vectors, 2019, 12(1):613. |
[58] | Wang LY, Sun F, Hu J, et al. The tick saliva peptide HIDfsin2 promotes the tick-borne virus SFTSV replication in vitro by enhancing p38 signal pathway[J]. Arch Toxicol, 2023, 97(6):1783-1794. |
[59] |
Fang LQ, Liu K, Li XL, et al. Emerging tick-borne infections in Chinese mainland: an increasing public health threat[J]. Lancet Infect Dis, 2015, 15(12):1467-1479.
doi: 10.1016/S1473-3099(15)00177-2 pmid: 26453241 |
[60] | Gao Y, Lv XL, Han SZ, et al. First detection of Borrelia miyamotoi infections in ticks and humans from the northeast of Inner Mongolia, China[J]. Acta Trop, 2021, 217:105857. |
[61] | Yu PF, Niu QL, Liu ZJ, et al. Molecular epidemiological surveillance to assess emergence and re-emergence of tick-borne infections in tick samples from China evaluated by nested PCRs[J]. Acta Trop, 2016, 158:181-188. |
[62] | Murase Y, Konnai S, Githaka N, et al. Prevalence of Lyme borrelia in Ixodes persulcatus ticks from an area with a confirmed case of Lyme disease[J]. J Vet Med Sci, 2013, 75(2):215-218. |
[63] | Zhao GP, Wang YX, Fan ZW, et al. Mapping ticks and tick-borne pathogens in China[J]. Nat Commun, 2021, 12(1):1075. |
[64] | Dong X, Chen XP, Liu N, et al. Co-circulation of multiple species of Rickettsiales bacteria in one single species of hard ticks in Shenyang, China[J]. Ticks Tick Borne Dis, 2014, 5(6):727-733. |
[65] |
Truong AT, Yun BR, Yoo MS, et al. Utility of ultra-rapid real-time PCR for detection and prevalence of Rickettsia spp. in ticks[J]. BMC Vet Res, 2022, 18(1):199.
doi: 10.1186/s12917-022-03311-7 pmid: 35624477 |
[66] | Li H, Li XM, Du J, et al. Candidatus Rickettsia xinyangensis as Cause of Spotted Fever Group Rickettsiosis, Xinyang, China, 2015[J]. Emerg Infect Dis, 2020, 26(5):985-988. |
[67] |
Zhuang L, Du J, Cui XM, et al. Identification of tick-borne pathogen diversity by metagenomic analysis in Haemaphysalis longicornis from Xinyang, China[J]. Infect Dis Poverty, 2018, 7(1):45.
doi: 10.1186/s40249-018-0417-4 pmid: 29730989 |
[68] |
Zhang JW, Liu QB, Wang DM, et al. Epidemiological survey of ticks and tick-borne pathogens in pet dogs in south-eastern China[J]. Parasite, 2017, 24:35.
doi: 10.1051/parasite/2017036 pmid: 28971797 |
[69] | Zhao N, Pan K, Teng ZQ, et al. Molecular detection reveals diverse tick-borne bacterial and protozoan pathogens in two tick species from Yingshan County of Hubei Province, China in 2021-2022[J]. Front Microbiol, 2023, 14:1298037. |
[70] | Zhang K, Li AJ, Wang Y, et al. Investigation of the presence of Ochrobactrum spp. and Brucella spp. in Haemaphysalis longicornis[J]. Ticks Tick Borne Dis, 2021, 12(1):101588. |
[71] | Kang JG, Ko S, Barney Smith W, et al. Prevalence of Anaplasma, Bartonella and Borrelia Species in Haemaphysalis longicornis collected from goats in North Korea[J]. J Vet Sci, 2016, 17(2):207-216. |
[72] |
Chen Z, Liu Q, Liu JQ, et al. Tick-borne pathogens and associated co-infections in ticks collected from domestic animals in Central China[J]. Parasit Vectors, 2014, 7:237.
doi: 10.1186/1756-3305-7-237 pmid: 24886497 |
[73] | Thompson AT, White SA, Shaw D, et al. A multi-seasonal study investigating the phenology, host and habitat associations, and pathogens of Haemaphysalis longicornis in Virginia, U. S. A[J]. Ticks Tick Borne Dis, 2021, 12(5):101773. |
[74] | Zhou YZ, Zhang HS, Cao J, et al. Epidemiology of toxoplasmosis: role of the tick Haemaphysalis longicornis[J]. Infect Dis Poverty, 2016, 5:14. |
[75] | Yun SM, Lee YJ, Choi W, et al. Molecular detection of severe fever with thrombocytopenia syndrome and tick-borne encephalitis viruses in ixodid ticks collected from vegetation, Republic of Korea, 2014[J]. Ticks Tick Borne Dis, 2016, 7(5):970-978. |
[76] | Yabsley MJ, Thompson AT. Haemaphysalis longicornis (Asian longhorned tick)[J]. Trends Parasitol, 2023, 39(4):305-306. |
[77] | Yang LE, Zhao ZH, Hou GB, et al. Genomes and seroprevalence of severe fever with thrombocytopenia syndrome virus and Nairobi sheep disease virus in Haemaphysalis longicornis ticks and goats in Hubei, China[J]. Virology, 2019, 529:234-245. |
[78] | Meng F, Ding MM, Tan ZZ, et al. Virome analysis of tick-borne viruses in Heilongjiang Province, China[J]. Ticks Tick Borne Dis, 2019, 10(2):412-420. |
[79] |
Raney WR, Perry JB, Hermance ME. Transovarial Transmission of Heartland Virus by Invasive Asian Longhorned Ticks under Laboratory Conditions[J]. Emerg Infect Dis, 2022, 28(3):726-729.
doi: 10.3201/eid2803.210973 pmid: 35202534 |
[80] | Mekata H, Kobayashi I, Okabayashi T. Detection and phylogenetic analysis of Dabieshan tick virus and Okutama tick virus in ticks collected from Cape Toi, Japan[J]. Ticks Tick Borne Dis, 2023, 14(6):102237. |
[81] |
Zhang L, Li S, Huang SJ, et al. Isolation and genomic characterization of lymphocytic choriomeningitis virus in ticks from northeastern China[J]. Transbound Emerg Dis, 2018, 65(6):1733-1739.
doi: 10.1111/tbed.12946 pmid: 29992783 |
[82] |
Kreizinger Z, Hornok S, Dán A, et al. Prevalence of Francisella tularensis and Francisella-like endosymbionts in the tick population of Hungary and the genetic variability of Francisella-like agents[J]. Vector Borne Zoonotic Dis, 2013, 13(3):160-163.
doi: 10.1089/vbz.2012.1065 pmid: 23421891 |
[83] |
Dwużnik-Szarek D, Mierzejewska EJ, Alsarraf M, et al. Pathogens detected in the tick Haemaphysalis concinna in Western Poland: known and unknown threats[J]. Exp Appl Acarol, 2021, 84(4):769-783.
doi: 10.1007/s10493-021-00647-x pmid: 34379235 |
[84] | Fuehrer HP, Biro N, Harl J, et al. Molecular detection of Theileria sp. ZS TO4 in red Deer (Cervus elaphus) and questing Haemaphysalis concinna ticks in Eastern Austria[J]. Vet Parasitol, 2013, 197(3/4):653-657. |
[85] | Zhang XA, Ma YD, Zhang YF, et al. A New Orthonairovirus Associated with Human Febrile Illness[J]. N Engl J Med, 2024, 391(9):821-831. |
[86] | Ejiri H, Lim CK, Isawa H, et al. Isolation and characterization of Kabuto Mountain virus, a new tick-borne phlebovirus from Haemaphysalis flava ticks in Japan[J]. Virus Res, 2018, 244:252-261. |
[87] | Fujita R, Ejiri H, Lim CK, et al. Isolation and characterization of Tarumizu tick virus: A new coltivirus from Haemaphysalis flava ticks in Japan[J]. Virus Res, 2017, 242:131-140. |
[88] | Kim JY, Kwak YS, Lee IY, et al. Molecular Detection of Toxoplasma gondii in Haemaphysalis Ticks in Korea[J]. Korean J Parasitol, 2020, 58(3):327-331. |
[89] |
Zhu CQ, Ai LL, Qi Y, et al. Molecular detection of spotted fever group rickettsiae in hedgehogs (Erinaceus amurensis) and hedgehog-attached ticks in Xuyi County, SouthEast China[J]. Exp Appl Acarol, 2022, 88(1):97-111.
doi: 10.1007/s10493-022-00721-y pmid: 36097185 |
[90] | Fang LZ, Lei SC, Yan ZJ, et al. Detection of Multiple Intracellular Bacterial Pathogens in Haemaphysalis flava Ticks Collected from Hedgehogs in Central China[J]. Pathogens, 2021, 10(2):115. |
[91] | Papa AN, Kontana A, Tsioka K, et al. Novel phlebovirus detected in Haemaphysalis parva ticks in a Greek island[J]. Ticks Tick Borne Dis, 2017, 8(1):157-160. |
[92] | Eremeeva ME, Weiner LM, Zambrano ML, et al. Detection and characterization of a novel spotted fever group Rickettsia genotype in Haemaphysalis leporispalustris from California, USA[J]. Ticks Tick Borne Dis, 2018, 9(4):814-818. |
[93] | Heglasová I, Rudenko N, Golovchenko M, et al. Ticks, fleas and rodent-hosts analyzed for the presence of Borrelia miyamotoi in Slovakia: the first record of Borrelia miyamotoi in a Haemaphysalis inermis tick[J]. Ticks Tick Borne Dis, 2020, 11(5):101456. |
[94] | Kobayashi D, Kuwata R, Kimura T, et al. Detection of Quaranjavirus-Like Sequences from Haemaphysalis hystricis Ticks Collected in Japan[J]. Jpn J Infect Dis, 2022, 75(2):195-198. |
[95] | Aneela A, Almutairi MM, Alouffi A, et al. Molecular Detection of Rickettsia hoogstraalii in Hyalomma anatolicum and Haemaphysalis sulcata: Updated Knowledge on the Epidemiology of Tick-Borne Rickettsia hoogstraalii[J]. Vet Sci, 2023, 10(10):605. |
[1] | 耿浩翔, 储娜, 李明, 储修杰, 孙永, 陈晴晴, 龚磊. 2010—2023年安徽省发热伴血小板减少综合征季节性特征分析[J]. 热带病与寄生虫学, 2024, 22(5): 262-266. |
[2] | 高桂玲, 王超, 姚春霞. 基于集中度和圆形分布法的中国登革热季节性流行特征分析[J]. 热带病与寄生虫学, 2024, 22(4): 208-211. |
[3] | 戴艳妮, 李青, 储修杰, 袁媛, 孙永, 龚磊. 2019—2023年安徽省肾综合征出血热流行特征与宿主动物监测分析[J]. 热带病与寄生虫学, 2024, 22(3): 152-156. |
[4] | 柳坤鹏, 朱启星. 基于分布滞后非线性模型分析巢湖市发热伴血小板减少综合征与气象因素的关系[J]. 热带病与寄生虫学, 2024, 22(3): 177-182. |
[5] | 余晚凤, 陶际春, 范冬青, 卜祥祥, 孙恩涛, 杨进孙, 王文节. 综合运用集中度与圆形分布法分析124例肾综合征出血热季节性分布特征[J]. 热带病与寄生虫学, 2022, 20(5): 260-263. |
[6] | 郭云海, 张仪. 广州管圆线虫中间宿主螺类调查研究进展[J]. 热带病与寄生虫学, 2022, 20(4): 185-190,196. |
[7] | 吴忠道. 我国人体寄生虫病与少见或罕见寄生虫病[J]. 热带病与寄生虫学, 2022, 20(3): 121-125. |
[8] | 颜明智, 赵军, 刘辉, 毕晓娟, 吕国栋, . AMPK信号通路及其在感染性疾病中的研究进展[J]. 热带病与寄生虫学, 2021, 19(1): 47-51. |
[9] | 廖宇煌, 卢文成, 毛强, 张启明, 何宇驰, 邓卓晖. 广东省首次红带锥蝽分布调查与分析[J]. 热带病与寄生虫学, 2020, 18(3): 145-150. |
[10] | 洪毅坚 张礼生 李先锋. 2018年安徽怀宁县钉螺分布现状调查分析[J]. 热带病与寄生虫学, 2019, 17(2): 107-108,110. |
[11] | 吴启平,盛明勇,万邦霖. 安徽繁昌县钉螺分布现状调查分析[J]. 热带病与寄生虫学, 2018, 16(1): 34-. |
[12] | 黄青青,陈勇,张戎,李琳琳. 2016年安徽芜湖市钉螺分布现状调查与分析[J]. 热带病与寄生虫学, 2017, 15(4): 212-215. |
[13] | 胡本骄,段宏波#,赵正元,李胜明,夏蒙,李广平,任光辉*. 2004~2011年湖南省血吸虫病流行程度时空特征研究[J]. 热带病与寄生虫学, 2017, 15(1): 11-13,35. |
[14] | 汤凌,连花,周杰,李胜明,李广平,胡本骄,夏蒙,王慧岚,任光辉. 湖南省垸内钉螺分布及防控对策分析[J]. 热带病与寄生虫学, 2016, 14(4): 192-194. |
[15] | 胡兴江. 湖北钟祥市文集镇钉螺分布状况分析[J]. 热带病与寄生虫学, 2016, 14(3): 177-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||