
热带病与寄生虫学 ›› 2025, Vol. 23 ›› Issue (5): 296-300.doi: 10.20199/j.issn.1672-2302.2025.05.008
李敏洁1,2(
), 吴毅强3, 廖师夷1,2, 杨宇哲3, 洪钰婕3, 谢云峰1,2, 吴安云3, 刘佳1,2(
), 孙恩涛3(
)
收稿日期:2025-04-03
出版日期:2025-10-20
发布日期:2025-11-28
通信作者:
刘佳,E-mail: liujiajia1@cofco.com;孙恩涛,E-mail: asdentao@126.com
作者简介:李敏洁,女,博士,工程师,研究方向:食品质量与安全。E-mail: 基金资助:
LI Minjie1,2(
), WU Yiqiang3, LIAO Shiyi1,2, YANG Yuzhe3, HONG Yujie3, XIE Yunfeng1,2, WU Anyun3, LIU Jia1,2(
), SUN Entao3(
)
Received:2025-04-03
Online:2025-10-20
Published:2025-11-28
Contact:
李敏洁,女,博士,工程师,研究方向:食品质量与安全。E-mail: liminjie@cofco.com
摘要:
目的 阐明马六甲肉食螨成虫共生微生物结构组成和多样性,为马六甲肉食螨规模化繁育及在仓储场所的应用提供生物学资料。方法 马六甲肉食螨样本于2022年采自安徽省芜湖市某农户粮仓的储藏物,经形态学鉴定后进行纯培养。提取马六甲肉食螨成虫DNA,对其共生细菌16S rRNA V4区和真菌ITS1序列进行扩增及高通量测序分析,统计共生微生物的操作分类单元(operational taxonomic units, OTUs)数量,分析其共生微生物结构组成及多样性。结果 获得马六甲肉食螨共生细菌16S rRNA V4区和真菌ITS1的有效序列190 788条和201 736条,聚类分别得到469个和270个OTUs。细菌分属27个门、50个纲、119个目、200个科和337个属;真菌共鉴定到4个门、18个纲、41个目、85个科和137个属。在门水平分类上,细菌的主要门类为假单胞菌门(Pseudomonadota)、疣微菌门(Verrucomicrobiota)和芽孢杆菌门(Bacillota),丰度分别为45.23%、20.98%和16.42%;真菌则主要属于子囊菌门(Ascomycota),丰度为93.86%。在属水平分类上,细菌的优势属为伊扎基氏菌属(Izhakiella)、Candidatus Fritschea和Candidatus Cardinium,丰度分别为35.62%、20.95%和13.12%;真菌的优势属为曲霉属(Aspergillus)、枝顶孢属(Acremonium)和肉座菌目未确定属(Indeterminate genus of Hypocreales),丰度分别为32.11%、14.72%和11.20%。Alpha多样性分析结果表明,马六甲肉食螨成虫共生细菌和真菌多样性丰富。结论 本研究揭示了马六甲肉食螨成虫共生微生物的群落结构和多样性,可为马六甲肉食螨大规模人工饲养扩繁技术提供理论支撑。
中图分类号:
李敏洁, 吴毅强, 廖师夷, 杨宇哲, 洪钰婕, 谢云峰, 吴安云, 刘佳, 孙恩涛. 马六甲肉食螨成虫共生微生物多样性分析[J]. 热带病与寄生虫学, 2025, 23(5): 296-300.
LI Minjie, WU Yiqiang, LIAO Shiyi, YANG Yuzhe, HONG Yujie, XIE Yunfeng, WU Anyun, LIU Jia, SUN Entao. Diversity of symbiotic microbiota of adult Cheyletus malaccensis[J]. Journal of Tropical Diseases and Parasitology, 2025, 23(5): 296-300.
表1
马六甲肉食螨成虫共生细菌和真菌多样性指数统计
| 类群 | 样品 | Sobs指数 | Ace指数 | Chao1指数 | Shannon指数 | Simpson指数 |
|---|---|---|---|---|---|---|
| 细菌16S rRNA V4区 | RS_1 | 199 | 221.11 | 210.23 | 1.93 | 0.30 |
| RS_2 | 270 | 292.54 | 290.57 | 1.46 | 0.47 | |
| RS_3 | 218 | 232.66 | 233.00 | 1.95 | 0.28 | |
| RS_4 | 204 | 215.04 | 214.22 | 2.20 | 0.16 | |
| 真菌ITS1 | RS_1 | 151 | 152.58 | 152.00 | 3.30 | 0.08 |
| RS_2 | 116 | 119.42 | 118.50 | 3.16 | 0.09 | |
| RS_3 | 132 | 148.04 | 141.00 | 3.60 | 0.06 | |
| RS_4 | 119 | 121.17 | 120.20 | 3.11 | 0.10 |
| [1] |
Mutambuki K, Likhayo P. Efficacy of different hermetic bag storage technologies against insect pests and aflatoxin incidence in stored maize grain[J]. Bull Entomol Res, 2021, 111(4):499-510.
doi: 10.1017/S0007485321000213 URL |
| [2] |
Maille JM, Schilling W, Phillips TW. Efficacy of the fumigant ethanedinitrile to control the ham mite, Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae), and its sorption on dry-cured ham[J]. Insects, 2024, 16(1):7.
doi: 10.3390/insects16010007 URL |
| [3] |
Asgari F, Moayeri HRS, Kavousi A, et al. Demography and mass rearing of Amblyseius swirskii (Acari: Phytoseiidae) fed on two species of stored-product mites and their mixture[J]. J Econ Entomol, 2020, 113(6):2604-2612.
doi: 10.1093/jee/toaa187 pmid: 32979269 |
| [4] | 崔淼, 伍祎, 曹阳, 等. 安徽省涉粮场所近期储粮虫螨调查[J]. 粮油食品科技, 2021, 29(3):215-221. |
| [5] | 孙为伟. 不同温度下马六甲肉食螨的生长发育与捕食研究[D]. 南京: 南京财经大学, 2019. |
| [6] |
Girard M, Luis P, Valiente Moro C, et al. Crosstalk between the microbiota and insect postembryonic development[J]. Trends Microbiol, 2023, 31(2):181-196.
doi: 10.1016/j.tim.2022.08.013 URL |
| [7] |
Zhu YX, Song ZR, Song YL, et al. The microbiota in spider mite feces potentially reflects intestinal bacterial communities in the host[J]. Insect Sci, 2020, 27(5):859-868.
doi: 10.1111/ins.v27.5 URL |
| [8] |
Sánchez-Chávez DI, Rodríguez-Zaragoza S, Velez P, et al. Fungal feeding preferences and molecular gut content analysis of two abundant oribatid mite species (Acari: Oribatida) Under The Canopy Of Prosopis laevigata (Fabaceae) in a semi-arid land[J]. Exp Appl Acarol, 2023, 89(3/4):417-432.
doi: 10.1007/s10493-023-00790-7 |
| [9] |
Hubert J, Nesvorna M, Bostlova M, et al. The effect of residual pesticide application on microbiomes of the storage mite Tyrophagus putrescentiae[J]. Microb Ecol, 2023, 85(4):1527-1540.
doi: 10.1007/s00248-022-02072-y |
| [10] | Legein M, Smets W, Wuyts K, et al. The greenhouse phyllosphere microbiome and associations with introduced bumblebees and predatory mites[J]. Microbiol Spectr, 2022, 10(4):e01755-22. |
| [11] |
Shi WB, Syrenne R, Sun JZ, et al. Molecular approaches to study the insect gut symbiotic microbiota at the ‘omics’ age[J]. Insect Sci, 2010, 17(3):199-219.
doi: 10.1111/ins.2010.17.issue-3 URL |
| [12] |
李心玫, 孙梦涛, 詹雨娟, 等. 马六甲肉食螨与转开肉食螨的形态及分子鉴定[J]. 中国媒介生物学及控制杂志, 2021, 32(2):230-234.
doi: 10.11853/j.issn.1003.8280.2021.02.022 |
| [13] |
Mizrahi-Man O, Davenport ER, Gilad Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs[J]. PLoS One, 2013, 8(1):e53608.
doi: 10.1371/journal.pone.0053608 URL |
| [14] |
Vancov T, Keen B. Amplification of soil fungal community DNA using the ITS86F and ITS4 primers[J]. FEMS Microbiol Lett, 2009, 296(1):91-96.
doi: 10.1111/j.1574-6968.2009.01621.x pmid: 19459948 |
| [15] | Schriefer AE, Cliften PF, Hibberd MC, et al. A multi-amplicon 16S rRNA sequencing and analysis method for improved taxonomic profiling of bacterial communities[J]. J Microbiol Methods, 2018,154:6-13. |
| [16] |
Yan H, Wang ED, Wei GS, et al. Both host and diet shape bacterial communities of predatory mites[J]. Insect Sci, 2024, 31(2):551-561.
doi: 10.1111/ins.v31.2 URL |
| [17] |
Guo YJ, Wang RL, Zhao YE, et al. Study on the relationship between microbial composition and living environment in important medical mites based on illumina MiSeq sequencing technology[J]. J Med Entomol, 2020, 57(4):1049-1056.
doi: 10.1093/jme/tjaa034 pmid: 32215556 |
| [18] |
Hubert J, Stejskal V, Nesvorna M, et al. Differences in the bacterial community of laboratory and wild populations of the predatory mite Cheyletus eruditus (Acarina: Cheyletidae) and bacteria transmission from its prey Acarus siro (Acari: Acaridae)[J]. J Econ Entomol, 2016, 109(3):1450-1457.
doi: 10.1093/jee/tow032 pmid: 27018441 |
| [19] |
Hubert J, Stejskal V, Kubátová A, et al. Mites as selective fungal carriers in stored grain habitats[J]. Exp Appl Acarol, 2003, 29(1):69-87.
doi: 10.1023/A:1024271107703 |
| [20] |
Zchori-Fein E, Perlman SJ. Distribution of the bacterial symbiont Cardinium in arthropods[J]. Mol Ecol, 2004, 13(7):2009-2016.
doi: 10.1111/j.1365-294X.2004.02203.x pmid: 15189221 |
| [21] | Hou KJ, Wu ZX, Chen XY, et al. Microbiota in health and diseases[J]. Signal Transduct Target Ther, 2022, 7(1):135. |
| [22] | Modha S, Robertson DL, Hughes J, et al. Quantifying and cataloguing unknown sequences within human microbiomes[J]. mSystems, 2022, 7(2):e01468-21. |
| [23] |
Ren XM, Cao S, Akami M, et al. Gut symbiotic bacteria are involved in nitrogen recycling in the tephritid fruit fly Bactrocera dorsalis[J]. BMC Biol, 2022, 20(1):201.
doi: 10.1186/s12915-022-01399-9 |
| [24] |
Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions[J]. Nature, 2018, 553(7689):427-436.
doi: 10.1038/nature25177 |
| [25] |
Libertucci J, Young VB. The role of the microbiota in infectious diseases[J]. Nat Microbiol, 2019, 4(1):35-45.
doi: 10.1038/s41564-018-0278-4 pmid: 30546094 |
| [26] |
Malhadas C, Malheiro R, Pereira JA, et al. Antimicrobial activity of endophytic fungi from olive tree leaves[J]. World J Microbiol Biotechnol, 2017, 33(3):46.
doi: 10.1007/s11274-017-2216-7 URL |
| [27] |
Wang Y, Zhu JQ, Fang J, et al. Diversity, composition and functional inference of gut microbiota in Indian cabbage white Pieris canidia (Lepidoptera: Pieridae)[J]. Life, 2020, 10(11):254.
doi: 10.3390/life10110254 URL |
| [1] | 叶独秋, 张驰, 庞博文, 吴佳玲, 蒋露芳, 吕锡宏. 上海市松江区白纹伊蚊共生微生物宏基因组分析[J]. 热带病与寄生虫学, 2024, 22(6): 334-338. |
| [2] | 张曼, 沈海默, 陈绅波, 陈军虎. 中缅边境地区间日疟原虫几丁质酶基因的遗传特性分析[J]. 热带病与寄生虫学, 2024, 22(2): 89-96. |
| [3] | 张艺馨, 王龙江, 刘建成, 刘萍萍, 王用斌, 许艳, 闫歌, 卜秀芹, 张佃波, 李曰进, 张本光. 膳食结构对鞭虫感染人群肠道菌群的影响研究[J]. 热带病与寄生虫学, 2023, 21(1): 35-43. |
| [4] | 徐桂娜 何雪梅 周晓蓉 曾凡胜 秦志强. 日本血吸虫虫卵分泌物小 RNA的高通量测序[J]. 热带病与寄生虫学, 2019, 17(4): 210-213. |
| [5] | 裴莉,李朝品. 大连地区仓储环境粉螨群落结构及多样性研究[J]. 热带病与寄生虫学, 2018, 16(4): 187-. |
| [6] | 裴莉. 大连地区农户储粮孳生粉螨群落组成及多样性研究[J]. 热带病与寄生虫学, 2018, 16(3): 153-. |
| [7] | 喻祎哲,杨杰,曾凡胜,王红梅,秦志强*. 日本血吸虫成虫的非编码RNA高通量测序分析[J]. 热带病与寄生虫学, 2017, 15(1): 31-35. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||