热带病与寄生虫学 ›› 2024, Vol. 22 ›› Issue (2): 89-96.doi: 10.3969/j.issn.1672-2302.2024.02.005
收稿日期:
2024-02-05
出版日期:
2024-04-20
发布日期:
2024-04-30
通信作者:
陈军虎,E-mail: 作者简介:
张曼,女,硕士在读,研究方向:病原生物学。E-mail: 基金资助:
ZHANG Man1(), SHEN Haimo1, CHEN Shenbo1, CHEN Junhu1,2,3(
)
Received:
2024-02-05
Online:
2024-04-20
Published:
2024-04-30
Contact:
CHEN Junhu, E-mail: 摘要:
目的 明确中缅边境地区间日疟原虫几丁质酶(Plasmodium vivax chitinase, PvCHT1)基因的遗传多样性,探究PvCHT1基因的地理差异,为我国间日疟疫苗的设计提供参考。方法 收集中缅边境地区(云南腾冲)、中国内陆地区(安徽合肥、河南郑州)PvCHT1基因序列,同时从美国国家生物技术信息中心(National Center for Biotechnology Information, NCBI)下载获取缅甸、柬埔寨、泰国、越南、印度尼西亚、马来西亚、巴布亚新几内亚、巴西、哥伦比亚、秘鲁和墨西哥等11个国家的PvCHT1基因序列。采用MEGA、DnaSP、KaKs_Calculator、Arlequin、STRUCTURE和 NETWORK软件,分别对所有基因序列的遗传多样性、基因进化、遗传分化、种群结构和单倍型网络进行分析。结果 共获得中缅边境地区(6条)、中国内陆地区(10条)PvCHT1基因序列16条,从NCBI下载其他11个国家的PvCHT1基因序列551条。遗传多样性分析显示,中缅边境地区的PvCHT1基因有25个多态位点,其中16个为非同义突变,最常见的突变位点是E617D(占31.57%)和I272M(占31.04%);中缅边境地区的PvCHT1基因核苷酸多样性(π=0.000 79)略高于中国内陆地区(π=0.000 71)和缅甸(π=0.000 75)。基因进化分析显示,中缅边境PvCHT1基因的中性检验(Tajima’s D)值<0,非同义替换与同义替换之比(Ka/Ks)>1。遗传分化分析显示,中缅边境地区PvCHT1基因与中国内陆之间的近交系数(FST)为0.31,与缅甸的FST为-0.05,与柬埔寨、泰国、越南、印度尼西亚、马来西亚之间的范围为0.04~0.15,与巴布亚新几内亚、巴西、哥伦比亚、秘鲁、墨西哥之间的FST范围为0.24~0.56。种群结构分析显示,所有种群结构的最佳组数为7,其中,中缅边境种群由K1~K6组分构成,以K5为主。单倍型网络分析显示,存在4个单倍型地理集群,除中国内陆和墨西哥外,其他国家均共享单倍型H5。结论 中缅边境地区PvCHT1基因高度保守,提示其可作为传播阻断疫苗候选靶标;PvCHT1基因在不同种群中存在明显的地理差异,因此在设计疫苗时应更具针对性。
中图分类号:
张曼, 沈海默, 陈绅波, 陈军虎. 中缅边境地区间日疟原虫几丁质酶基因的遗传特性分析[J]. 热带病与寄生虫学, 2024, 22(2): 89-96.
ZHANG Man, SHEN Haimo, CHEN Shenbo, CHEN Junhu. Analysis of the genetic characteristics of chitinase gene of Plasmodium vivax along the China-Myanmar border[J]. Journal of Tropical Diseases and Parasitology, 2024, 22(2): 89-96.
表1
PvCHT1基因的遗传多样性和自然选择
国家/地区 | S | H | Hd | π | K | Tajima’s D值 | P值 |
---|---|---|---|---|---|---|---|
中缅边境 | 4 | 3 | 0.600±0.215 | 0.000 79 | 1.533 | -0.676 13 | >0.05 |
中国内陆 | 3 | 4 | 0.733±0.120 | 0.000 71 | 1.378 | 1.076 59 | >0.05 |
缅甸 | 8 | 9 | 0.779±0.068 | 0.000 75 | 1.460 | -1.021 63 | >0.05 |
柬埔寨 | 13 | 32 | 0.840±0.020 | 0.001 03 | 2.008 | -0.275 26 | >0.05 |
泰国 | 12 | 21 | 0.846±0.020 | 0.000 95 | 1.847 | -0.434 84 | >0.05 |
越南 | 8 | 5 | 0.653±0.076 | 0.000 62 | 1.205 | -1.568 91 | >0.05 |
印度尼西亚 | 4 | 5 | 0.905±0.103 | 0.000 83 | 1.619 | -0.039 84 | >0.05 |
马来西亚 | 7 | 9 | 0.830±0.055 | 0.000 95 | 1.847 | -0.011 96 | >0.05 |
巴布亚新几内亚 | 4 | 7 | 0.762±0.051 | 0.000 63 | 1.230 | 0.601 27 | >0.05 |
巴西 | 3 | 4 | 0.705±0.074 | 0.000 57 | 1.105 | 0.587 19 | >0.05 |
哥伦比亚 | 6 | 6 | 0.807±0.028 | 0.000 78 | 1.522 | 0.195 00 | >0.05 |
秘鲁 | 5 | 6 | 0.476±0.069 | 0.000 34 | 0.664 | -0.849 87 | >0.05 |
墨西哥 | 3 | 4 | 0.695±0.063 | 0.000 53 | 1.032 | 0.587 39 | >0.05 |
表2
PvCHT1基因的正向选择测试
国家/地区 | Ka | Ks | Ka/Ks | P值 |
---|---|---|---|---|
中缅边境 | 0.008 8 | 0.000 8 | 1.123 9 | >0.05 |
中国内陆 | 2.777 3 | 3.841 8 | 0.722 9 | >0.05 |
缅甸 | 0.000 9 | 0.000 6 | 1.499 7 | >0.05 |
柬埔寨 | 2.743 9 | 3.536 9 | 0.775 8 | <0.05 |
泰国 | 2.746 6 | 3.619 4 | 0.758 9 | <0.05 |
越南 | 0.000 6 | 0.000 9 | 0.631 6 | >0.05 |
印度尼西亚 | 2.746 9 | 3.604 7 | 0.762 0 | >0.05 |
马来西亚 | 2.737 5 | 3.714 8 | 0.736 9 | <0.05 |
巴布亚新几内亚 | 0.000 6 | 0.000 6 | 0.982 8 | >0.05 |
巴西 | 2.750 2 | 3.762 8 | 0.730 9 | >0.05 |
哥伦比亚 | 2.759 0 | 3.745 3 | 0.736 7 | <0.05 |
秘鲁 | 2.765 0 | 3.790 2 | 0.729 5 | <0.05 |
墨西哥 | 0.000 4 | 0.000 9 | 0.421 4 | >0.05 |
表3
基于FST的PvCHT1基因的遗传分化分析
国家/地区 | 中国内陆 | 中缅边境 | 缅甸 | 柬埔寨 | 泰国 | 越南 | 印度尼西亚 | 马来西亚 | 巴布亚新几内亚 | 巴西 | 哥伦比亚 | 秘鲁 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
中缅边境 | 0.31* | |||||||||||
缅甸 | 0.33** | -0.05 | ||||||||||
柬埔寨 | 0.32** | 0.05 | 0.18** | |||||||||
泰国 | 0.28** | 0.06 | 0.18** | 0.03** | ||||||||
越南 | 0.45** | 0.15 | 0.25** | 0.05* | 0.08** | |||||||
印度尼西亚 | 0.30* | 0.04 | 0.17** | -0.00 | -0.04 | 0.00 | ||||||
马来西亚 | 0.28** | 0.09 | 0.21** | 0.08** | 0.05* | 0.23** | 0.05** | |||||
巴布亚新几内亚 | 0.52** | 0.24* | 0.33** | 0.07* | 0.12** | 0.05 | 0.06 | 0.29** | ||||
巴西 | 0.29** | 0.25** | 0.29** | 0.18** | 0.12** | 0.36** | 0.13 | 0.03 | 0.43** | |||
哥伦比亚 | 0.33** | 0.30* | 0.36** | 0.25** | 0.17** | 0.38** | 0.18* | 0.12** | 0.44** | 0.05* | ||
秘鲁 | 0.47** | 0.56** | 0.53** | 0.36** | 0.29** | 0.59** | 0.42** | 0.29** | 0.63** | 0.09* | 0.10** | |
墨西哥 | 0.49** | 0.53** | 0.53** | 0.37** | 0.30** | 0.58** | 0.42** | 0.24** | 0.60** | 0.20* | 0.09** | 0.18** |
[1] | World Health Organization. World malaria report 2023[R]. Geneva: World Health Organization, 2021. |
[2] |
Rodríguez-Hernández D, Vijayan K, Zigweid R, et al. Identification of potent and selective N-myristoyltransferase inhibitors of Plasmodium vivax liver stage hypnozoites and schizonts[J]. Nat Commun, 2023, 14(1):5408.
doi: 10.1038/s41467-023-41119-7 pmid: 37669940 |
[3] | 尹建海, 夏志贵. 巩固消除成果,防止再传播 ——我国消除疟疾后的主要挑战与工作重点[J]. 热带病与寄生虫学, 2022, 20(5):241-244,299. |
[4] |
张丽, 易博禹, 尹建海, 等. 2022年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2):137-141.
doi: 10.12140/j.issn.1000-7423.2023.02.002 |
[5] | Reyes-Sandoval A. Plasmodium vivax pre-erythrocytic vaccines[J]. Parasitol Int, 2021, 84:102411. |
[6] |
Challenger JD, Olivera Mesa D, Da DF, et al. Predicting the public health impact of a malaria transmission-blocking vaccine[J]. Nat Commun, 2021, 12(1):1494.
doi: 10.1038/s41467-021-21775-3 pmid: 33686061 |
[7] |
Vinetz JM, Valenzuela JG, Specht CA, et al. Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut[J]. J Biol Chem, 2000, 275(14):10331-10341.
doi: 10.1074/jbc.275.14.10331 pmid: 10744721 |
[8] |
Tsai YL, Hayward RE, Langer RC, et al. Disruption of Plasmodium falciparum chitinase markedly impairs parasite invasion of mosquito midgut[J]. Infect Immun, 2001, 69(6):4048-4054.
pmid: 11349075 |
[9] |
Viswanath VK, Gore ST, Valiyaparambil A, et al. Plasmodium chitinases: revisiting a target of transmission-blockade against malaria[J]. Protein Sci, 2021, 30(8):1493-1501.
doi: 10.1002/pro.4095 pmid: 33934433 |
[10] | Lê HG, Kang JM, Moe M, et al. Genetic polymorphism and natural selection of circumsporozoite surface protein in Plasmodium falciparum field isolates from Myanmar[J]. Malar J, 2018, 17(1):361. |
[11] | Pearson RD, Amato R, Auburn S, et al. Genomic analysis of local variation and recent evolution in Plasmodium vivax[J]. Nat Genet, 2016, 48(8):959-964. |
[12] | Hupalo DN, Luo ZP, Melnikov A, et al. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax[J]. Nat Genet, 2016, 48(8):953-958. |
[13] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[14] |
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11):1451-1452.
doi: 10.1093/bioinformatics/btp187 pmid: 19346325 |
[15] | Wang DP, Zhang YB, Zhang Z, et al. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies[J]. Genomics Proteomics Bioinformatics, 2010, 8(1):77-80. |
[16] |
Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions[J]. Mol Biol Evol, 1986, 3(5):418-426.
doi: 10.1093/oxfordjournals.molbev.a040410 pmid: 3444411 |
[17] |
Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models[J]. Mol Biol Evol, 2000, 17(1):32-43.
doi: 10.1093/oxfordjournals.molbev.a026236 pmid: 10666704 |
[18] |
Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis[J]. Evol Bioinform Online, 2007, 1:47-50.
pmid: 19325852 |
[19] | Ahmed MA, Fauzi M, Han ET. Genetic diversity and natural selection of Plasmodium knowlesi merozoite surface protein 1 paralog gene in Malaysia[J]. Malar J, 2018, 17(1):115. |
[20] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.
doi: 10.1111/j.1365-294X.2005.02553.x pmid: 15969739 |
[21] |
Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies[J]. Mol Biol Evol, 1999, 16(1):37-48.
doi: 10.1093/oxfordjournals.molbev.a026036 pmid: 10331250 |
[22] | 杨立军, 周隆参, 潘茂华, 等. 2012—2021年中国输入性疟疾病例特征分析[J]. 热带医学杂志, 2024, 24(3):432-436. |
[23] | Chan LJ, Gandhirajan A, Carias LL, et al. Naturally acquired blocking human monoclonal antibodies to Plasmodium vivax reticulocyte binding protein 2b[J]. Nat Commun, 2021, 12(1):1538. |
[24] | Pacheco MA, Elango AP, Rahman AA, et al. Evidence of purifying selection on merozoite surface protein 8 (MSP8) and 10 (MSP10) in Plasmodium spp[J]. Infect Genet Evol, 2012, 12(5):978-986. |
[25] |
Zhao X, Hu YB, Zhao Y, et al. Genetic diversity in the transmission-blocking vaccine candidate Plasmodium vivax gametocyte protein Pvs230 from the China-Myanmar border area and central Myanmar[J]. Parasit Vectors, 2022, 15(1):371.
doi: 10.1186/s13071-022-05523-0 pmid: 36253843 |
[26] | de Jong RM, Tebeje SK, Meerstein-Kessel L, et al. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites[J]. Immunol Rev, 2020, 293(1):190-215. |
[27] |
Putaporntip C, Kuamsab N, Rojrung R, et al. Structural organization and sequence diversity of the complete nucleotide sequence encoding the Plasmodium malariae merozoite surface protein-1[J]. Sci Rep, 2022, 12(1):15591.
doi: 10.1038/s41598-022-19049-z pmid: 36114242 |
[28] | Kuamsab N, Putaporntip C, Pattanawong U, et al. Insights into the molecular diversity of Plasmodium vivax merozoite surface protein-3γ (pvmsp3γ), a polymorphic member in the msp3 multi-gene family[J]. Sci Rep, 2020, 10(1):10977. |
[29] | Tapaopong P, da Silva G, Chainarin S, et al. Genetic diversity and molecular evolution of Plasmodium vivax Duffy Binding Protein and Merozoite Surface Protein-1 in northwestern Thailand[J]. Infect Genet Evol, 2023, 113:105467. |
[30] |
Bejon P, Mwacharo J, Kai O, et al. A phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya[J]. PLoS Clin Trials, 2006, 1(6):e29.
doi: 10.1371/journal.pctr.0010029 pmid: 17053830 |
[31] | Barry AE, Schultz L, Buckee CO, et al. Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite, Plasmodium falciparum[J]. PLoS One, 2009, 4(12):e8497. |
[32] | Chong ETJ, Neoh JWF, Lau TY, et al. Genetic diversity of circumsporozoite protein in Plasmodium knowlesi isolates from Malaysian Borneo and Peninsular Malaysia[J]. Malar J, 2020, 19(1):377. |
[33] | Ochwedo KO, Onyango SA, Omondi CJ, et al. Signatures of selection and drivers for novel mutation on transmission-blocking vaccine candidate Pfs25 gene in western Kenya[J]. PLoS One, 2022, 17(4):e0266394. |
[34] |
Feng H, Gupta B, Wang ML, et al. Genetic diversity of transmission-blocking vaccine candidate Pvs48/45 in Plasmodium vivax populations in China[J]. Parasit Vectors, 2015, 8:615.
doi: 10.1186/s13071-015-1232-4 pmid: 26627683 |
[1] | 唐烨榕, 周红宁, 李菁华, 肖建鹏. 基于时空多成分模型的中缅边境地区景洪市登革热流行特征分析[J]. 热带病与寄生虫学, 2024, 22(2): 83-88. |
[2] | 沈加员, 李春敏, 邓伟, 唐永林, 张国成, 杨忠平, 杨明东. 中缅边境地区孟定镇首次暴发登革热病例临床特征分析[J]. 热带病与寄生虫学, 2023, 21(5): 267-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||