Journal of Tropical Diseases and Parasitology ›› 2024, Vol. 22 ›› Issue (5): 315-320.doi: 10.20199/j.issn.1672-2302.2024.05.012
• REVIEW • Previous Articles
GAO Yang(), GUAN Fei, LEI Jiahui(
)
Received:
2024-04-03
Online:
2024-10-20
Published:
2024-11-15
Contact:
LEI Jiahui, E-mail: leijiahui@hust.edu.cn
CLC Number:
GAO Yang, GUAN Fei, LEI Jiahui. Role and mechanism of melatonin in the treatment of infectious diseases[J]. Journal of Tropical Diseases and Parasitology, 2024, 22(5): 315-320.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdbzz.com/EN/10.20199/j.issn.1672-2302.2024.05.012
[1] | Bagnaresi P, Nakabashi M, Thomas AP, et al. The role of melatonin in parasite biology[J]. Mol Biochem Parasitol, 2012, 181(1):1-6. |
[2] |
Acuña-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions[J]. Cell Mol Life Sci, 2014, 71(16):2997-3025.
doi: 10.1007/s00018-014-1579-2 pmid: 24554058 |
[3] | Minich DM, Henning M, Darley C, et al. Is melatonin the "next vitamin D" ?: a review of emerging science, clinical uses, safety, and dietary supplements[J]. Nutrients, 2022, 14(19):3934. |
[4] | Tan DX, Manchester LC, Esteban-Zubero E, et al. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism[J]. Molecules, 2015, 20(10):18886-18906. |
[5] | Mistraletti G, Paroni R, Umbrello M, et al. Melatonin pharmacological blood levels increase total antioxidant capacity in critically ill patients[J]. Int J Mol Sci, 2017, 18(4):759. |
[6] |
Carrillo-Vico A, Lardone PJ, Alvarez-Sánchez N, et al. Melatonin: buffering the immune system[J]. Int J Mol Sci, 2013, 14(4):8638-8683.
doi: 10.3390/ijms14048638 pmid: 23609496 |
[7] | Mocayar Marón FJ, Ferder L, Reiter RJ, et al. Daily and seasonal mitochondrial protection: unraveling common possible mechanisms involving vitamin D and melatonin[J]. J Steroid Biochem Mol Biol, 2020,199:105595. |
[8] |
Amstrup AK, Sikjaer T, Heickendorff L, et al. Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial[J]. J Pineal Res, 2015, 59(2):221-229.
doi: 10.1111/jpi.12252 pmid: 26036434 |
[9] |
Messina G, Lissoni P, Marchiori P, et al. Enhancement of the efficacy of cancer chemotherapy by the pineal hormone melatonin and its relation with the psychospiritual status of cancer patients[J]. J Res Med Sci, 2010, 15(4):225-228.
pmid: 21526086 |
[10] |
Furio AM, Brusco LI, Cardinali DP. Possible therapeutic value of melatonin in mild cognitive impairment: a retrospective study[J]. J Pineal Res, 2007, 43(4):404-409.
pmid: 17910609 |
[11] | Zhao W, Wang L, Zhang L. How does academia respond to the burden of infectious and parasitic disease?[J]. Health Res Policy Syst, 2022, 20(1):89. |
[12] | 靳莉, 徐超, 张华, 等. 褪黑素调控MEG3/miR-223/NLRP3轴对流感病毒感染小鼠模型肺损伤的影响[J]. 中国免疫学杂志, 2023, 39(12):2528-2533. |
[13] | 桑伊妙, 潘璐璐, 顾孝红, 等. 褪黑素在病毒性心肌炎中的保护作用[J]. 医学研究杂志, 2017, 46(7):52-56,136. |
[14] | Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chem Biol Interact, 2006, 160(1):1-40. |
[15] |
Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK[J]. J Pineal Res, 2013, 54(3):245-257.
doi: 10.1111/jpi.12010 pmid: 22998574 |
[16] |
Reiter RJ, Mayo JC, Tan DX, et al. Melatonin as an antioxidant: under promises but over delivers[J]. J Pineal Res, 2016, 61(3):253-278.
doi: 10.1111/jpi.12360 pmid: 27500468 |
[17] | Tan DX, Manchester LC, Reiter RJ, et al. Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation[J]. Free Radic Biol Med, 2000, 29(11):1177-1185. |
[18] | Tapias V, Escames G, López LC, et al. Melatonin and its brain metabolite N1-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian mice[J]. J Neurosci Res, 2009, 87(13):3002-3010. |
[19] |
Ortiz F, García JA, Acuña-Castroviejo D, et al. The beneficial effects of melatonin against heart mitochondrial impairment during sepsis: inhibition of iNOS and preservation of nNOS[J]. J Pineal Res, 2014, 56(1):71-81.
doi: 10.1111/jpi.12099 pmid: 24117944 |
[20] |
López A, García JA, Escames G, et al. Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production[J]. J Pineal Res, 2009, 46(2):188-198.
doi: 10.1111/j.1600-079X.2008.00647.x pmid: 19054298 |
[21] |
Agil A, El-Hammadi M, Jiménez-Aranda A, et al. Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats[J]. J Pineal Res, 2015, 59(1):70-79.
doi: 10.1111/jpi.12241 pmid: 25904243 |
[22] | Deng ZY, He M, Hu HB, et al. Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation[J]. Autophagy, 2024, 20(1):151-165. |
[23] | Zatta P, Tognon G, Carampin P. Melatonin prevents free radical formation due to the interaction between beta-amyloid peptides and metal ions[Al(III), Zn(II), Cu(II), Mn(II), Fe(II)][J]. J Pineal Res, 2003, 35(2):98-103. |
[24] |
Parmar P, Limson J, Nyokong T, et al. Melatonin protects against copper-mediated free radical damage[J]. J Pineal Res, 2002, 32(4):237-242.
pmid: 11982793 |
[25] | Anhê GF, Caperuto LC, Pereira-Da-Silva M, et al. In vivo activation of insulin receptor tyrosine kinase by melatonin in the rat hypothalamus[J]. J Neurochem, 2004, 90(3):559-566. |
[26] | Szanto A, Balint BL, Nagy ZS, et al. STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells[J]. Immunity, 2010, 33(5):699-712. |
[27] | Xia YY, Chen SY, Zeng SJ, et al. Melatonin in macrophage biology: Current understanding and future perspectives[J]. J Pineal Res, 2019, 66(2):e12547. |
[28] |
Alonso M, Collado PS, González-Gallego J. Melatonin inhibits the expression of the inducible isoform of nitric oxide synthase and nuclear factor kappa B activation in rat skeletal muscle[J]. J Pineal Res, 2006, 41(1):8-14.
doi: 10.1111/j.1600-079X.2006.00323.x pmid: 16842535 |
[29] |
Matute JD, Arias AA, Wright NA, et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity[J]. Blood, 2009, 114(15):3309-3315.
doi: 10.1182/blood-2009-07-231498 pmid: 19692703 |
[30] |
Winterbourn CC, Hampton MB, Livesey JH, et al. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome:implications for microbial killing[J]. J Biol Chem, 2006, 281(52):39860-39869.
doi: 10.1074/jbc.M605898200 pmid: 17074761 |
[31] |
Aycicek A, Iscan A, Erel O, et al. Oxidant and antioxidant parameters in the treatment of meningitis[J]. Pediatr Neurol, 2007, 37(2):117-120.
pmid: 17675026 |
[32] | Gerber J, Lotz M, Ebert S, et al. Melatonin is neuroprotective in experimental Streptococcus pneumoniae meningitis[J]. J Infect Dis, 2005, 191(5):783-790. |
[33] |
Spreer A, Gerber J, Baake D, et al. Antiinflammatory but no neuroprotective effects of melatonin under clinical treatment conditions in rabbit models of bacterial meningitis[J]. J Neurosci Res, 2006, 84(7):1575-1579.
pmid: 16998917 |
[34] | Sener G, Tuğtepe H, Velioğlu-Oğünç A, et al. Melatonin prevents neutrophil-mediated oxidative injury in Escherichia coli-induced pyelonephritis in rats[J]. J Pineal Res, 2006, 41(3):220-227. |
[35] |
Gitto E, Pellegrino S, Gitto P, et al. Oxidative stress of the newborn in the pre- and postnatal period and the clinical utility of melatonin[J]. J Pineal Res, 2009, 46(2):128-139.
doi: 10.1111/j.1600-079X.2008.00649.x pmid: 19054296 |
[36] |
Ciriolo MR, Palamara AT, Incerpi S, et al. Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection[J]. J Biol Chem, 1997, 272(5):2700-2708.
doi: 10.1074/jbc.272.5.2700 pmid: 9006907 |
[37] |
To EE, Vlahos R, Luong R, et al. Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy[J]. Nat Commun, 2017, 8(1):69.
doi: 10.1038/s41467-017-00057-x pmid: 28701733 |
[38] | Kirkby NS, Zaiss AK, Wright WR, et al. Differential COX-2 induction by viral and bacterial PAMPs: consequences for cytokine and interferon responses and implications for anti-viral COX-2 directed therapies[J]. Biochem Biophys Res Commun, 2013, 438(2):249-256. |
[39] | Guo CH, Chen PC, Lin KP, et al. Trace metal imbalance associated with oxidative stress and inflammatory status in anti-hepatitis C virus antibody positive subjects[J]. Environ Toxicol Pharmacol, 2012, 33(2):288-296. |
[40] | Capone F, Guerriero E, Sorice A, et al. Characterization of metalloproteinases, oxidative status and inflammation levels in the different stages of fibrosis in HCV patients[J]. Clin Biochem, 2012, 45(7/8):525-529. |
[41] | Soto ME, Pérez-Torres I, Manzano-Pech L, et al. Redox homeostasis alteration is restored through melatonin treatment in COVID-19 patients: a preliminary study[J]. Int J Mol Sci, 2024, 25(8):4543. |
[42] | Huang SH, Cao XJ, Liu W, et al. Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice[J]. J Pineal Res, 2010, 48(2):109-116. |
[43] | Valero N, Mosquera J, Alcocer S, et al. Melatonin, minocycline and ascorbic acid reduce oxidative stress and viral titers and increase survival rate in experimental Venezuelan equine encephalitis[J]. Brain Res, 2015,1622:368-376. |
[44] |
Guha M, Maity P, Choubey V, et al. Melatonin inhibits free radical-mediated mitochondrial-dependent hepatocyte apoptosis and liver damage induced during malarial infection[J]. J Pineal Res, 2007, 43(4):372-381.
doi: 10.1111/j.1600-079X.2007.00488.x pmid: 17910606 |
[45] |
Brazão V, Colato RP, Santello FH, et al. Interleukin-17, oxidative stress, and inflammation: role of melatonin during Trypanosoma cruzi infection[J]. J Pineal Res, 2015, 59(4):488-496.
doi: 10.1111/jpi.12280 pmid: 26432539 |
[46] | El-Sokkary GH, Omar HM, Hassanein AF, et al. Melatonin reduces oxidative damage and increases survival of mice infected with Schistosoma mansoni[J]. Free Radic Biol Med, 2002, 32(4):319-332. |
[47] |
Buijs RM, Markman M, Nunes-Cardoso B, et al. Projections of the suprachiasmatic nucleus to stress-related areas in the rat hypothalamus: a light and electron microscopic study[J]. J Comp Neurol, 1993, 335(1):42-54.
pmid: 7691904 |
[48] |
van der Beek EM, Horvath TL, Wiegant VM, et al. Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies[J]. J Comp Neurol, 1997, 384(4):569-579.
pmid: 9259490 |
[49] | Buijs RM, Wortel J, van Heerikhuize JJ, et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway[J]. Eur J Neurosci, 1999, 1(5):1535-1544. |
[50] |
Weaver DR, Reppert SM. The Mel1a melatonin receptor gene is expressed in human suprachiasmatic nuclei[J]. Neuroreport, 1996, 8(1):109-112.
pmid: 9051762 |
[51] |
Redman J, Armstrong S, Ng KT. Free-running activity rhythms in the rat: entrainment by melatonin[J]. Science, 1983, 219(4588):1089-1091.
pmid: 6823571 |
[52] | 崔素颖, 秦宇, 张永鹤. 睡眠调控与睡眠调节药物研究进展[J]. 中国药理学与毒理学杂志, 2022, 36(11):801-811. |
[53] |
Huang N, Chelliah Y, Shan YL, et al. Crystal structure of the heterodimeric CLOCK: BMAL1 transcriptional activator complex[J]. Science, 2012, 337(6091):189-194.
doi: 10.1126/science.1222804 pmid: 22653727 |
[54] | Kornmann B, Schaad O, Bujard H, et al. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock[J]. PLoS Biol, 2007, 5(2):e34. |
[55] |
Dinet V, Ansari N, Torres-Farfan C, et al. Clock gene expression in the retina of melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice[J]. J Pineal Res, 2007, 42(1):83-91.
pmid: 17198542 |
[56] | Fu SQ, Kuwahara M, Uchida Y, et al. Circadian production of melatonin in cartilage modifies rhythmic gene expression[J]. J Endocrinol,2019:JOE-J19-0022. R2. |
[57] |
Dimitrov S, Benedict C, Heutling D, et al. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets[J]. Blood, 2009, 113(21):5134-5143.
doi: 10.1182/blood-2008-11-190769 pmid: 19293427 |
[58] |
Petrovsky N, McNair P, Harrison LC. Diurnal rhythms of pro-inflammatory cytokines: regulation by plasma cortisol and therapeutic implications[J]. Cytokine, 1998, 10(4):307-312.
doi: 10.1006/cyto.1997.0289 pmid: 9617577 |
[59] |
Esquifino AI, Selgas L, Arce A, et al. Twenty-four-hour rhythms in immune responses in rat submaxillary lymph nodes and spleen: effect of cyclosporine[J]. Brain Behav Immun, 1996, 10(2):92-102.
pmid: 8811933 |
[60] |
Engeset A, Sokolowski J, Olszewski WL. Variation in output of leukocytes and erythrocytes in human peripheral lymph during rest and activity[J]. Lymphology, 1977, 10(4):198-203.
pmid: 609275 |
[61] | Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system[J]. Nat Rev Immunol, 2013,13:190-198. |
[62] |
Nguyen KD, Fentress SJ, Qiu YF, et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes[J]. Science, 2013, 341(6153):1483-1488.
doi: 10.1126/science.1240636 pmid: 23970558 |
[63] | Maury E, Navez B, Brichard SM. Circadian clock dysfunction in human omental fat links obesity to metabolic inflammation[J]. Nat Commun, 2021,12:2388. |
[64] | Early JO, Menon D, Wyse CA, et al. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2[J]. Proc Natl Acad Sci USA, 2018, 115(36):E8460-E8468. |
[65] |
Gagnidze K, Hajdarovic KH, Moskalenko M, et al. Nuclear receptor REV-ERBα mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis[J]. Proc Natl Acad Sci USA, 2016, 113(20):5730-5735.
doi: 10.1073/pnas.1520489113 pmid: 27143721 |
[66] |
Bonilla E, Valero-Fuenmayor N, Pons H, et al. Melatonin protects mice infected with Venezuelan equine encephalomyelitis virus[J]. Cell Mol Life Sci, 1997, 53(5):430-434.
doi: 10.1007/s000180050051 pmid: 9176561 |
[67] |
Zarezadeh M, Khorshidi M, Emami M, et al. Melatonin supplementation and pro-inflammatory mediators: a systematic review and meta-analysis of clinical trials[J]. Eur J Nutr, 2020, 59(5):1803-1813.
doi: 10.1007/s00394-019-02123-0 pmid: 31679041 |
[68] | Shaji AV, Kulkarni SK, Agrewala JN. Regulation of secretion of IL-4 and IgG1 isotype by melatonin-stimulated ovalbumin-specific T cells[J]. Clin Exp Immunol, 2001, 111(1):181-185. |
[69] | Liu ZJ, Gan L, Xu YT, et al. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue[J]. J Pineal Res, 2017, 63(1):e12414. |
[70] |
Zhang Y, Li XR, Grailer JJ, et al. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome[J]. J Pineal Res, 2016, 60(4):405-414.
doi: 10.1111/jpi.12322 pmid: 26888116 |
[71] | Bishayi B, Adhikary R, Nandi A, et al. Beneficial effects of exogenous melatonin in acute Staphylococcus aureus and Escherichia coli infection-induced inflammation and associated behavioral response in mice after exposure to short photoperiod[J]. Inflammation, 2016, 39(6):2072-2093. |
[72] | Wu UI, Mai FD, Sheu JN, et al. Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis[J]. J Pineal Res, 2011, 50(2):159-170. |
[73] |
Lowes DA, Webster NR, Murphy MP, et al. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis[J]. Br J Anaesth, 2013, 110(3):472-480.
doi: 10.1093/bja/aes577 pmid: 23381720 |
[74] | Shang Y, Xu SP, Wu Y, et al. Melatonin reduces acute lung injury in endotoxemic rats[J]. Chin Med J, 2009, 122(12):1388-1393. |
[75] |
Kitidee K, Samutpong A, Pakpian N, et al. Antiviral effect of melatonin on Japanese encephalitis virus infection involves inhibition of neuronal apoptosis and neuroinflammation in SH-SY5Y cells[J]. Sci Rep, 2023, 13(1):6063.
doi: 10.1038/s41598-023-33254-4 pmid: 37055489 |
[76] |
Alizadeh Z, Keyhanian N, Ghaderkhani S, et al. A pilot study on controlling coronavirus disease 2019 (COVID-19) inflammation using melatonin supplement[J]. Iran J Allergy Asthma Immunol, 2021, 20(4):494-499.
pmid: 34418903 |
[77] | Huang SH, Cao XJ, Wei W. Melatonin decreases TLR3-mediated inflammatory factor expression via inhibition of NF-kappa B activation in respiratory syncytial virus-infected RAW264. 7 macrophages[J]. J Pineal Res, 2008, 45(1):93-100. |
[78] | Yin M, Marrone L, Peace CG, et al. NLRP3,the inflammasome and COVID-19 infection[J]. QJM, 2023, 116(7):502-507. |
[79] | Peng ZY, Zhang WX, Qiao JF, et al. Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD[J]. Int Immunopharmacol, 2018,62:23-28. |
[80] | Cardinali DP, Brown GM, Pandi-Perumal SR. Can melatonin be a potential “silver bullet” in treating COVID-19 patients?[J]. Diseases, 2020, 8(4):E44. |
[81] | Lan SH, Lee HZ, Chao CM, et al. Efficacy of melatonin in the treatment of patients with COVID-19:a systematic review and meta-analysis of randomized controlled trials[J]. J Med Virol, 2022, 94(5):2102-2107. |
[82] |
Eskes R, Desagher S, Antonsson B, et al. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane[J]. Mol Cell Biol, 2000, 20(3):929-935.
doi: 10.1128/MCB.20.3.929-935.2000 pmid: 10629050 |
[83] |
Tuñón MJ, San Miguel B, Crespo I, et al. Melatonin attenuates apoptotic liver damage in fulminant hepatic failure induced by the rabbit hemorrhagic disease virus[J]. J Pineal Res, 2011, 50(1):38-45.
doi: 10.1111/j.1600-079X.2010.00807.x pmid: 20964705 |
[84] |
García-Lastra R, San-Miguel B, Crespo I, et al. Signaling pathways involved in liver injury and regeneration in rabbit hemorrhagic disease, an animal model of virally-induced fulminant hepatic failure[J]. Vet Res, 2010, 41(1):2.
doi: 10.1051/vetres/2009050 pmid: 19726019 |
[85] | Wang XM, Liu T, Lv X, et al. A potential nontraditional approach to combat tmexCD1-toprJ1-Mediated tigecycline resistance: melatonin as a synergistic adjuvant of tigecycline[J]. Antimicrob Agents Chemother, 2023, 67(7):e0004723. |
[86] |
Seabra ML, Bignotto M, Pinto LR Jr, et al. Randomized,double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment[J]. J Pineal Res, 2000, 29(4):193-200.
doi: 10.1034/j.1600-0633.2002.290401.x pmid: 11068941 |
[87] | Masadeh MM, Alzoubi KH, Al-Azzam SI, et al. Ciprofloxacin-induced antibacterial activity is atteneuated by pretreatment with antioxidant agents[J]. Pathogens, 2016, 5(1):28. |
[88] |
Santello FH, Frare EO, Caetano LC, et al. Melatonin enhances pro-inflammatory cytokine levels and protects against Chagas disease[J]. J Pineal Res, 2008, 45(1):79-85.
doi: 10.1111/j.1600-079X.2008.00558.x pmid: 18284549 |
[89] |
Di WC, Jin ZX, Lei WR, et al. Protection of melatonin treatment and combination with traditional antibiotics against septic myocardial injury[J]. Cell Mol Biol Lett, 2023, 28(1):35.
doi: 10.1186/s11658-022-00415-8 pmid: 37101253 |
[1] | HE Jibo, NIAN Pengying, ZHENG Erda, ZHANG Yanli, CHEN Lihua. Analysis on the epidemiological characteristics of public health emergencies of communicable diseases in the cross border area of Yunnan Province, 2018-2022 [J]. Journal of Tropical Diseases and Parasitology, 2024, 22(4): 217-222. |
[2] | YUE Wen-fang, LIU Fu-qiang, DUAN Hong-ying, XIA Meng-zhi, CAI Fu-wen, ZHANG Si-yu. Analysis on the epidemiological characteristics of public health emergencies from intestinal infectious in schools in Hunan Province from 2004 to 2022 [J]. Journal of Tropical Diseases and Parasitology, 2023, 21(3): 141-145,154. |
[3] | ZHAO Ke-fu, WANG Wen-Jing, WU Jin-ju, LIU Xu-xiang. Analysis on the epidemiological characteristics of public health emergencies in Hefei City from 2011 to 2020 [J]. Journal of Tropical Diseases and Parasitology, 2023, 21(3): 155-159. |
[4] | ZHAO Jin, HU Wei-hong, ZHANG Si-yu, LUO Piao-yi, KUANG Wen-tao, NI Han, ZHA Wen-ting, YI Shang-hui, LÜ Yuan. Analysis on the epidemiological characteristics of public health emergencies in schools in Changsha from 2012 to 2022 [J]. Journal of Tropical Diseases and Parasitology, 2023, 21(3): 164-168. |
[5] | YAN Ming-zhi , ZHAO Jun, LIU Hui , BI Xiao-juan , LÜ Guo-dong . AMPK signaling pathway and its research progress in infectious disease [J]. Journal of Tropical Diseases and Parasitology, 2021, 19(1): 47-51. |
[6] | YANG Jin-sun∗, QUAN Bin. Thinking about the teaching of infectious diseases from the epidemic situation of novel coronavirus pneumonia [J]. Journal of Tropical Diseases and Parasitology, 2020, 18(2): 124-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||