[1] |
World Health Organization. World malaria report 2023[R]. Geneva: World Health Organization, 2021.
|
[2] |
Rodríguez-Hernández D, Vijayan K, Zigweid R, et al. Identification of potent and selective N-myristoyltransferase inhibitors of Plasmodium vivax liver stage hypnozoites and schizonts[J]. Nat Commun, 2023, 14(1):5408.
doi: 10.1038/s41467-023-41119-7
pmid: 37669940
|
[3] |
尹建海, 夏志贵. 巩固消除成果,防止再传播 ——我国消除疟疾后的主要挑战与工作重点[J]. 热带病与寄生虫学, 2022, 20(5):241-244,299.
|
[4] |
张丽, 易博禹, 尹建海, 等. 2022年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2):137-141.
doi: 10.12140/j.issn.1000-7423.2023.02.002
|
[5] |
Reyes-Sandoval A. Plasmodium vivax pre-erythrocytic vaccines[J]. Parasitol Int, 2021, 84:102411.
|
[6] |
Challenger JD, Olivera Mesa D, Da DF, et al. Predicting the public health impact of a malaria transmission-blocking vaccine[J]. Nat Commun, 2021, 12(1):1494.
doi: 10.1038/s41467-021-21775-3
pmid: 33686061
|
[7] |
Vinetz JM, Valenzuela JG, Specht CA, et al. Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut[J]. J Biol Chem, 2000, 275(14):10331-10341.
doi: 10.1074/jbc.275.14.10331
pmid: 10744721
|
[8] |
Tsai YL, Hayward RE, Langer RC, et al. Disruption of Plasmodium falciparum chitinase markedly impairs parasite invasion of mosquito midgut[J]. Infect Immun, 2001, 69(6):4048-4054.
pmid: 11349075
|
[9] |
Viswanath VK, Gore ST, Valiyaparambil A, et al. Plasmodium chitinases: revisiting a target of transmission-blockade against malaria[J]. Protein Sci, 2021, 30(8):1493-1501.
doi: 10.1002/pro.4095
pmid: 33934433
|
[10] |
Lê HG, Kang JM, Moe M, et al. Genetic polymorphism and natural selection of circumsporozoite surface protein in Plasmodium falciparum field isolates from Myanmar[J]. Malar J, 2018, 17(1):361.
|
[11] |
Pearson RD, Amato R, Auburn S, et al. Genomic analysis of local variation and recent evolution in Plasmodium vivax[J]. Nat Genet, 2016, 48(8):959-964.
|
[12] |
Hupalo DN, Luo ZP, Melnikov A, et al. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax[J]. Nat Genet, 2016, 48(8):953-958.
|
[13] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
doi: 10.1093/molbev/msw054
pmid: 27004904
|
[14] |
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11):1451-1452.
doi: 10.1093/bioinformatics/btp187
pmid: 19346325
|
[15] |
Wang DP, Zhang YB, Zhang Z, et al. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies[J]. Genomics Proteomics Bioinformatics, 2010, 8(1):77-80.
|
[16] |
Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions[J]. Mol Biol Evol, 1986, 3(5):418-426.
doi: 10.1093/oxfordjournals.molbev.a040410
pmid: 3444411
|
[17] |
Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models[J]. Mol Biol Evol, 2000, 17(1):32-43.
doi: 10.1093/oxfordjournals.molbev.a026236
pmid: 10666704
|
[18] |
Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis[J]. Evol Bioinform Online, 2007, 1:47-50.
pmid: 19325852
|
[19] |
Ahmed MA, Fauzi M, Han ET. Genetic diversity and natural selection of Plasmodium knowlesi merozoite surface protein 1 paralog gene in Malaysia[J]. Malar J, 2018, 17(1):115.
|
[20] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.
doi: 10.1111/j.1365-294X.2005.02553.x
pmid: 15969739
|
[21] |
Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies[J]. Mol Biol Evol, 1999, 16(1):37-48.
doi: 10.1093/oxfordjournals.molbev.a026036
pmid: 10331250
|
[22] |
杨立军, 周隆参, 潘茂华, 等. 2012—2021年中国输入性疟疾病例特征分析[J]. 热带医学杂志, 2024, 24(3):432-436.
|
[23] |
Chan LJ, Gandhirajan A, Carias LL, et al. Naturally acquired blocking human monoclonal antibodies to Plasmodium vivax reticulocyte binding protein 2b[J]. Nat Commun, 2021, 12(1):1538.
|
[24] |
Pacheco MA, Elango AP, Rahman AA, et al. Evidence of purifying selection on merozoite surface protein 8 (MSP8) and 10 (MSP10) in Plasmodium spp[J]. Infect Genet Evol, 2012, 12(5):978-986.
|
[25] |
Zhao X, Hu YB, Zhao Y, et al. Genetic diversity in the transmission-blocking vaccine candidate Plasmodium vivax gametocyte protein Pvs230 from the China-Myanmar border area and central Myanmar[J]. Parasit Vectors, 2022, 15(1):371.
doi: 10.1186/s13071-022-05523-0
pmid: 36253843
|
[26] |
de Jong RM, Tebeje SK, Meerstein-Kessel L, et al. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites[J]. Immunol Rev, 2020, 293(1):190-215.
|
[27] |
Putaporntip C, Kuamsab N, Rojrung R, et al. Structural organization and sequence diversity of the complete nucleotide sequence encoding the Plasmodium malariae merozoite surface protein-1[J]. Sci Rep, 2022, 12(1):15591.
doi: 10.1038/s41598-022-19049-z
pmid: 36114242
|
[28] |
Kuamsab N, Putaporntip C, Pattanawong U, et al. Insights into the molecular diversity of Plasmodium vivax merozoite surface protein-3γ (pvmsp3γ), a polymorphic member in the msp3 multi-gene family[J]. Sci Rep, 2020, 10(1):10977.
|
[29] |
Tapaopong P, da Silva G, Chainarin S, et al. Genetic diversity and molecular evolution of Plasmodium vivax Duffy Binding Protein and Merozoite Surface Protein-1 in northwestern Thailand[J]. Infect Genet Evol, 2023, 113:105467.
|
[30] |
Bejon P, Mwacharo J, Kai O, et al. A phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya[J]. PLoS Clin Trials, 2006, 1(6):e29.
doi: 10.1371/journal.pctr.0010029
pmid: 17053830
|
[31] |
Barry AE, Schultz L, Buckee CO, et al. Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite, Plasmodium falciparum[J]. PLoS One, 2009, 4(12):e8497.
|
[32] |
Chong ETJ, Neoh JWF, Lau TY, et al. Genetic diversity of circumsporozoite protein in Plasmodium knowlesi isolates from Malaysian Borneo and Peninsular Malaysia[J]. Malar J, 2020, 19(1):377.
|
[33] |
Ochwedo KO, Onyango SA, Omondi CJ, et al. Signatures of selection and drivers for novel mutation on transmission-blocking vaccine candidate Pfs25 gene in western Kenya[J]. PLoS One, 2022, 17(4):e0266394.
|
[34] |
Feng H, Gupta B, Wang ML, et al. Genetic diversity of transmission-blocking vaccine candidate Pvs48/45 in Plasmodium vivax populations in China[J]. Parasit Vectors, 2015, 8:615.
doi: 10.1186/s13071-015-1232-4
pmid: 26627683
|