Journal of Tropical Diseases and Parasitology ›› 2025, Vol. 23 ›› Issue (3): 171-175,182.doi: 10.20199/j.issn.1672-2302.2025.03.008
• CONTROL STUDY • Previous Articles Next Articles
LI Yongsheng1(), DU Xunbo1, LONG Lu1, WEI Rongjie2, WANG Yao1(
), WANG Liang1(
)
Received:
2024-11-09
Online:
2025-06-20
Published:
2025-08-08
Contact:
WANG Yao, E-mail: 330146703@qq.com; WANG Liang, E-mail: 363686849@qq.com
CLC Number:
LI Yongsheng, DU Xunbo, LONG Lu, WEI Rongjie, WANG Yao, WANG Liang. Epidemiological characteristics and spatiotemporal distribution of scarlet fever in Chengdu City, 2017-2023[J]. Journal of Tropical Diseases and Parasitology, 2025, 23(3): 171-175,182.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdbzz.com/EN/10.20199/j.issn.1672-2302.2025.03.008
Table 1
Population distribution of scarlet fever in Chengdu City, 2017-2023
特征 | 报告病例数(例) | 构成比(%) | |||||||
---|---|---|---|---|---|---|---|---|---|
2017年 | 2018年 | 2019年 | 2020年 | 2021年 | 2022年 | 2023年 | 合计 | ||
性别 | |||||||||
男性 | 730 | 530 | 429 | 140 | 275 | 287 | 278 | 2 669 | 60.21 |
女性 | 464 | 377 | 284 | 93 | 185 | 179 | 182 | 1 764 | 39.79 |
年龄(岁) | |||||||||
<1 | 6 | 2 | 2 | 0 | 2 | 0 | 1 | 13 | 0.29 |
1 | 23 | 19 | 10 | 10 | 14 | 4 | 6 | 86 | 1.94 |
2 | 34 | 26 | 20 | 21 | 14 | 11 | 16 | 142 | 3.20 |
3 | 94 | 81 | 59 | 25 | 40 | 35 | 29 | 363 | 8.19 |
4 | 221 | 95 | 103 | 26 | 80 | 77 | 51 | 653 | 14.73 |
5 | 272 | 187 | 137 | 32 | 86 | 85 | 58 | 857 | 19.33 |
6 | 238 | 230 | 166 | 48 | 107 | 112 | 109 | 1 010 | 22.78 |
7 | 143 | 128 | 105 | 30 | 59 | 74 | 99 | 638 | 14.39 |
8 | 73 | 57 | 44 | 17 | 40 | 40 | 45 | 316 | 7.13 |
9 | 41 | 22 | 25 | 5 | 9 | 15 | 26 | 143 | 3.23 |
10 | 15 | 22 | 9 | 5 | 3 | 6 | 11 | 71 | 1.60 |
11~14 | 26 | 22 | 12 | 8 | 3 | 4 | 7 | 82 | 1.85 |
≥15 | 8 | 16 | 21 | 6 | 3 | 3 | 2 | 59 | 1.33 |
职业 | |||||||||
幼托儿童 | 661 | 434 | 338 | 81 | 252 | 258 | 163 | 2 187 | 49.33 |
学生 | 406 | 367 | 313 | 95 | 166 | 184 | 265 | 1 796 | 40.51 |
散居儿童 | 123 | 93 | 54 | 54 | 40 | 24 | 30 | 418 | 9.43 |
其他 | 4 | 13 | 8 | 3 | 2 | 0 | 2 | 32 | 0.72 |
Table 2
Regional distribution of scarlet fever in Chengdu City, 2017-2023
地区 | 报告病例数(例) | 年均报告发病率 (/10万) | |||||||
---|---|---|---|---|---|---|---|---|---|
2017年 | 2018年 | 2019年 | 2020年 | 2021年 | 2022年 | 2023年 | 合计 | ||
邛崃市 | 69 | 128 | 146 | 42 | 54 | 69 | 81 | 589 | 13.68 |
新都区 | 363 | 234 | 105 | 56 | 73 | 118 | 85 | 1 034 | 12.93 |
龙泉驿区 | 153 | 76 | 68 | 13 | 69 | 63 | 53 | 495 | 6.39 |
双流区 | 155 | 122 | 125 | 35 | 99 | 87 | 73 | 696 | 5.60 |
新津区 | 24 | 20 | 17 | 15 | 12 | 6 | 5 | 99 | 4.15 |
锦江区 | 43 | 40 | 26 | 4 | 19 | 19 | 19 | 170 | 3.08 |
武侯区 | 89 | 90 | 65 | 15 | 38 | 28 | 53 | 378 | 2.38 |
青羊区 | 51 | 36 | 19 | 4 | 13 | 15 | 10 | 148 | 2.38 |
金牛区 | 53 | 37 | 39 | 7 | 23 | 16 | 17 | 192 | 2.23 |
成华区 | 53 | 31 | 28 | 17 | 15 | 10 | 13 | 167 | 2.10 |
蒲江县 | 5 | 6 | 12 | 1 | 2 | 0 | 4 | 30 | 1.69 |
青白江区 | 8 | 8 | 8 | 3 | 7 | 2 | 7 | 43 | 1.39 |
郫都区 | 41 | 15 | 12 | 5 | 11 | 13 | 8 | 105 | 1.35 |
简阳市 | 24 | 23 | 17 | 5 | 7 | 10 | 16 | 102 | 1.35 |
温江区 | 13 | 25 | 12 | 3 | 2 | 0 | 3 | 58 | 1.19 |
金堂县 | 25 | 9 | 4 | 3 | 9 | 5 | 7 | 62 | 1.18 |
大邑县 | 6 | 0 | 5 | 3 | 5 | 2 | 0 | 21 | 0.59 |
彭州市 | 10 | 3 | 4 | 1 | 2 | 1 | 3 | 24 | 0.44 |
都江堰市 | 8 | 4 | 1 | 1 | 0 | 2 | 3 | 19 | 0.39 |
崇州市 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.02 |
Table 3
Global-spatial autocorrelation analysis of incidence rate of scarlet fever in subdistricts/townships in Chengdu City, 2017-2023
年份 | Moran’s I值 | Z值 | P值 |
---|---|---|---|
2017 | 0.028 | 2.195 | <0.05 |
2018 | 0.031 | 2.176 | <0.05 |
2019 | 0.048 | 3.130 | <0.05 |
2020 | 0.020 | 1.438 | >0.05 |
2021 | 0.093 | 5.739 | <0.01 |
2022 | 0.043 | 2.924 | <0.05 |
2023 | 0.080 | 4.916 | <0.01 |
Table 4
Local spatial autocorrelation analysis of scarlet fever incidence in Chengdu City, 2017-2023
年份 | “高-高”聚集(个) | “低-低”聚集(个) | “高-低”聚集(个) | “低-高”聚集(个) |
---|---|---|---|---|
2017 | 10个:新都区(6)、双流区(2)、龙泉驿区(1)、金牛区(1) | 71个:简阳市(27)、崇州市(14)、彭州市(7)、都江堰市(7)、温江区(4)、大邑县(4)、蒲江县(3)、金堂县(3)、郫都区(2) | 2个:金堂县(1)、简阳市(1) | 10个:青白江区(5)、龙泉驿区(2)、新都区(1)、双流区(1)、成华区(1) |
2018 | 14个:邛崃市(4)、新都区(3)、双流区(3)、武侯区(1)、青白江区(1)、锦江区(1)、金牛区(1) | 58个:简阳市(19)、崇州市(11)、都江堰市(9)、彭州市(8)、金堂县(7)、大邑县(4) | 2个:简阳市(1)、大邑县(1) | 5个:新都区(2)、青白江区(1)、金牛区(1)、大邑县(1) |
2019 | 17个:双流区(8)、邛崃市(5)、龙泉驿区(2)、武侯区(1)、 锦江区(1) | 58个:简阳市(18)、金堂县(12)、崇州市(12)、都江堰市(10)、彭州市(5)、温江区(1) | 2个:简阳市(1)、大邑县(1) | 11个:新都区(3)、锦江区(2)、双流区(1)、邛崃市(1)、青白江区(1)、蒲江县(1)、龙泉驿区(1)、大邑县(1) |
2020 | 12个:双流区(4)、邛崃市(4)、新都区(3)、青白江区(1) | 30个:简阳市(10)、崇州市(9)、都江堰市(4)、温江区(3)、郫都区(2)、金堂县(2) | 4个:简阳市(2)、金堂县(1)、都江堰市(1) | 5个:新都区(2)、青白江区(1)、金牛区(1)、大邑县(1) |
2021 | 20个:双流区(8)、龙泉驿区(5)、新都区(2)、武侯区(2)、 锦江区(2)、青白江区(1) | 62个:简阳市(23)、崇州市(12)、都江堰市(10)、彭州市(6)、温江区(5)、金堂县(4)、 蒲江县(1)、大邑县(1) | 3个:简阳市(2)、温江区(1) | 8个:双流区(3)、龙泉驿区(2)、新都区(1)、武侯区(1)、锦江区(1) |
2022 | 14个:双流区(5)、新都区(4)、邛崃市(2)、龙泉驿区(2)、 锦江区(1) | 42个:简阳市(13)、崇州市(12)、温江区(4)、都江堰市(4)、彭州市(3)、金堂县(3)、 大邑县(3) | 1个:金堂县(1) | 10个:青白江区(4)、双流区(3)、新都区(1)、邛崃市(1)、龙泉驿区(1) |
2023 | 19个:双流区(6)、邛崃市(5)、新都区(2)、武侯区(2)、龙泉驿区(2)、蒲江县(1)、锦江区(1) | 30个:崇州市(12)、大邑县(4)、温江区(3)、金堂县(3)、简阳市(3)、都江堰市(3)、郫都区(1)、彭州市(1) | 4个:简阳市(2)、新津区(1)、温江区(1) | 11个:双流区(3)、新都区(2)、锦江区(2)、邛崃市(1)、青白江区(1)、龙泉驿区(1)、大邑县(1) |
Table 5
Spatial-temporal scan of scarlet fever in Chengdu City, 2017-2023
类型 | 聚集区域 | 聚集时间(年/月) | 实际病例数(例) | 理论病例数(例) | RR值 | LLR值 | P值 |
---|---|---|---|---|---|---|---|
一类 | 新都区 | 2017/01—2019/01 | 611 | 55.89 | 12.52 | 943.06 | <0.001 |
二类 | 邛崃市 | 2017/04—2020/01 | 343 | 61.06 | 6.01 | 319.35 | <0.001 |
二类 | 龙泉驿区 | 2021/04—2021/07 | 193 | 41.08 | 4.87 | 149.33 | <0.001 |
二类 | 双流区、新津区 | 2017/01—2019/12 | 396 | 165.96 | 2.52 | 120.66 | <0.001 |
二类 | 武侯区、青羊区 | 2017/04—2017/07 | 89 | 34.10 | 2.64 | 30.82 | <0.001 |
二类 | 锦江区、成华区 | 2017/04—2017/07 | 56 | 18.41 | 3.07 | 24.86 | <0.001 |
二类 | 郫都区、温江区、金牛区 | 2017/04—2017/06 | 50 | 21.76 | 2.31 | 13.45 | <0.05 |
[1] | 李兰娟. 传染病学[M]. 10版. 北京: 人民卫生出版社,2024:163-166. |
[2] |
Park DW, Kim SH, Park JW, et al. Incidence and characteristics of scarlet fever, south Korea, 2008-2015[J]. Emerg Infect Dis, 2017, 23(4):658-661.
doi: 10.3201/eid2304.160773 pmid: 28322696 |
[3] | You YH, Davies MR, Protani M, et al. Scarlet fever epidemic in China caused by Streptococcus pyogenes serotype M12: epidemiologic and molecular analysis[J]. E Bio Medicine, 2018,28:128-135. |
[4] |
Yung CF, Thoon KC. A 12 year outbreak of scarlet fever in Singapore[J]. Lancet Infect Dis, 2018, 18(9):942.
doi: S1473-3099(18)30464-X pmid: 30152353 |
[5] |
Venkatesan P. Rise in group A streptococcal infections in England[J]. Lancet Respir Med, 2023, 11(2):e16.
doi: 10.1016/S2213-2600(22)00507-0 pmid: 36549319 |
[6] | World Health Organization. Increased incidence of scarlet fever and invasive Group A Streptococcus infection-multi-country[EB/OL]. (2022-12-15)[2024-10-10]. https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON429. |
[7] |
Liu YH, Chan TC, Yap LW, et al. Resurgence of scarlet fever in China: a 13-year population-based surveillance study[J]. Lancet Infect Dis, 2018, 18(8):903-912.
doi: S1473-3099(18)30231-7 pmid: 29858148 |
[8] | 崔瑾钰, 张业武, 苏雪梅. 2010—2019年中国猩红热发病时空扫描分析[J]. 疾病监测, 2023, 38(3):287-293. |
[9] | 李羚, 杜飞, 吕强, 等. 2015—2022年四川省猩红热流行特征和时空聚集性分析[J]. 预防医学情报杂志, 2024, 40(9):1080-1087. |
[10] | 成都市卫生健康委员会. 2023年成都市卫生健康事业发展统计公报[EB/OL]. (2024-04-25)[2024-10-10]. https://cdwjw.chengdu.gov.cn/cdwjw/tongjishuju/2024-04/26/content_c39d5cd069084cbab902fb6d74af3ee7.shtml. |
[11] | 廖如珺, 刘润友, 杨长虹. 四川省2009—2018年猩红热流行病学分析[J]. 传染病信息, 2019, 32(4):322-324,328. |
[12] | Chan TC, King CC. Surveillance and epidemiology of infectious diseases using spatial and temporal lustering methods[J]. Infect Dis Inform Biosurveill, 2011,27:207-234. |
[13] | 肖崇堃, 武依, 周丽君, 等. 2016—2020年四川省猩红热流行病学特征分析[J]. 预防医学情报杂志, 2023, 39(3):253-258,264. |
[14] | 中华人民共和国民政部. 2022年中华人民共和国行政区划代码[EB/OL]. (2023-04-23)[2024-10-10]. https://www.mca.gov.cn/n156/n186/c110744/content.html. |
[15] | 成都市规划和自然资源局. 《成都市城市总体规划(2011—2020年)》概况[EB/OL]. (2016-04-29)[2024-10-10]. https://mpnr.chengdu.gov.cn/ghhzrzyj/ztgh/2019-07/14/content_39be6057b8194c4d89afde1e26625a69.shtml. |
[16] | Anselin L. Local indicators of spatial association: LISA[J]. Geogr Anal, 1995, 27(2):93-115. |
[17] | GIS Geography. Spatial Autocorrelation and Moran’s I in GIS[EB/OL]. (2023-07-25) [2024-10-10]. https://gisgeography.com/spatial-autocorrelation-moran-i-gis/. |
[18] | 殷菲. 时—空扫描统计量在传染病早期预警中的应用研究[D]. 成都: 四川大学,2007:109-115. |
[19] | 四川省卫生健康委员会. 四川省法定传染病疫情概况[EB/OL]. (2024-01-12)[2024-10-10]. https://wsjkw.sc.gov.cn/scwsjkw/rdts/tygl_2.shtml. |
[20] | 国家疾病预防控制局. 政府信息公开[EB/OL]. (2024-01-15)[2024-10-10]. https://www.ndcpa.gov.cn/jbkzzx/c100016/common/list.html. |
[21] | 中华人民共和国中央人民政府. 中国抗疫“组合拳”成效显著[EB/OL]. (2020-02-14)[2024-10-10]. https://www.gov.cn/xinwen/2020-05/17/content_5512288.htm. |
[22] | Fang Z, Ma CJ, Xu WL, et al. Epidemiological characteristics and trends of scarlet fever in Zhejiang Province of China: population-based surveillance during 2004-2022[J]. Can J Infect Dis Med Microbiol,2024:6257499. |
[23] | 铁小茜, 赵昆. 公共卫生紧急状态下医疗资源分配的伦理反思[J]. 中国医学伦理学, 2022, 35(6):631-635. |
[24] | Song SS, Wang P, Li J, et al. The indirect impact of control measures in COVID-19 pandemic on the incidence of other infectious diseases in China[J]. Public Health Pract (Oxf), 2022,4:100278. |
[25] | Huh K, Jung J, Hong J, et al. Impact of nonpharmaceutical interventions on the incidence of respiratory infections during the coronavirus disease 2019 (COVID-19) outbreak in Korea: a nationwide surveillance study[J]. Clin Infect Dis, 2021, 72(7):e184-e191. |
[26] | Lu QB, Wu HC, Ding ZY, et al. Analysis of epidemiological characteristics of scarlet fever in Zhejiang Province, China, 2004-2018[J]. Int J Environ Res Public Health, 2019, 16(18):3454. |
[27] | Mahara G, Wang C, Huo D, et al. Spatiotemporal pattern analysis of scarlet fever incidence in Beijing, China, 2005-2014[J]. Int J Environ Res Public Health, 2016, 13(1):131. |
[1] | ZHAI Qianqian, LIU Huihui, WANG Junfeng, CAI Jian, AN Guangxu, ZHANG Yang, YAO Laishun. Epidemiological characteristics and spatial clustering of hemorrhagic fever with renal syndrome in Jilin Province from 2011 to 2023 [J]. Journal of Tropical Diseases and Parasitology, 2025, 23(3): 165-170. |
[2] | XU Kai, WANG Yao, SU Liyuan, FENG Songqi, CHENG Yue, LIU Hui. Epidemiological characteristics and temporal-spatial clustering analysis of hand, foot and mouth disease in Chengdu City from 2014 to 2023 [J]. Journal of Tropical Diseases and Parasitology, 2025, 23(2): 91-97. |
[3] | ZHOU Rong, FENG Songqi, LI Ming, CHEN Lihuang, WANG Yao. Epidemiological investigation on a Chlamydia psittaci infection patient likely caused by exposure to the external environment contaminated through ventilation shaft in Chengdu City [J]. Journal of Tropical Diseases and Parasitology, 2025, 23(2): 122-124. |
[4] | XIAO Huihui, YANG Dong, DAI Zhihui, ZHOU Yinzhu. Analysis on the epidemiological characteristics of hand, foot and mouth disease in population aged 6 and over in Changsha, 2013-2022 [J]. Journal of Tropical Diseases and Parasitology, 2024, 22(3): 172-176. |
[5] | WANG Qi, SHI Yue, QIN Yao, MA Huilai, ZHANG Lijie, SUN Junling, LIU Huihui. Epidemiological characteristics and spatial-temporal cluster of visceral leishmaniosis in China, 2017-2022 [J]. Journal of Tropical Diseases and Parasitology, 2024, 22(2): 68-75. |
[6] | SUN Kun, HU Weihong, ZHOU Yinzhu, CHEN Shuilian, QIU Jinsong. Analysis on the epidemiological characteristics and management of varicella outbreak in Changsha City from 2012 to 2022 [J]. Journal of Tropical Diseases and Parasitology, 2024, 22(1): 37-41. |
[7] | LIU Wei, LIU Siyang, YOU Enqing, CHEN Lili, CHEN Wei, LI Juan, ZHANG Lei, ZHANG Jiaxiang. Analysis on the epidemiological characteristics of scrub typhus in Hefei City from 2014 to 2022 [J]. Journal of Tropical Diseases and Parasitology, 2023, 21(6): 311-314. |
[8] | SUN Fusheng, FENG Li, SUN Yinling, HUANGFU Beibei, CHEN Xiuying, LIU Zengfa. Spatial epidemiological analysis of pulmonary tuberculosis in Heze City from 2017 to 2021 based on township [J]. Journal of Tropical Diseases and Parasitology, 2023, 21(6): 335-337. |
[9] | XU Kai, DAI Ying-xue, WANG Yao, WANG Liang, XIAO Chong-kun. Epidemiological characteristics and spatiotemporal clustering of other infectious diarrhea in Chengdu City from 2011 to 2021 [J]. Journal of Tropical Diseases and Parasitology, 2023, 21(1): 13-19. |
[10] | ZHA Zhi-yan, ZHOU Yong-ming, ZHOU Yang, MAO Zhi-peng. Epidemiological characteristics of other infectious diarrhea in Kunming City from 2017 to 2021 [J]. Journal of Tropical Diseases and Parasitology, 2023, 21(1): 20-24. |
[11] | GAO Gui-ling, LÜ Xi-hong, SUN Zhong-xing. Analysis of the impact of COVID-19 on the prevalence of scarlet fever based on SIRIMA model: a case study of Songjiang District, Shanghai [J]. Journal of Tropical Diseases and Parasitology, 2022, 20(6): 301-306. |
[12] | CAI Yong-cheng, JIANG Shao-bin, ZHANG Ping. Epidemiological characteristics of hand, foot and mouth disease in Luojiang District of Quanzhou City from 2011 to 2020 [J]. Journal of Tropical Diseases and Parasitology, 2022, 20(6): 313-316. |
[13] | XIE Qin, WANG Tao, LI Zhi-wei, WU Jun. Public health emergencies in Dantu District of Zhenjiang City from 2010 to 2021 [J]. Journal of Tropical Diseases and Parasitology, 2022, 20(6): 317-320. |
[14] | WANG Wei-chun, ZHAN Ti, FAN Ze-han, ZHU Ying-fu, DUAN Yong-mei, CAO Zhi-guo. Spatial clustering analysis of schistosomiasis prevalence in Ma’anshan City from 2011 to 2020 [J]. Journal of Tropical Diseases and Parasitology, 2021, 19(4): 194-. |
[15] | LI Yun-xia, SUN Yi-Ying, LIANG Na, AI-Lin, TIAN Li-Guang. Investigation and analysis of paragonimiasis prevalence in Luoyang City from 2003 to 2019 [J]. Journal of Tropical Diseases and Parasitology, 2021, 19(2): 86-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||