
热带病与寄生虫学 ›› 2024, Vol. 22 ›› Issue (1): 61-64.doi: 10.3969/j.issn.1672-2302.2024.01.013
• 综述 • 上一篇
收稿日期:2023-08-28
									
				
									
				
									
				
											出版日期:2024-02-20
									
				
											发布日期:2024-03-15
									
			通信作者:
					张崇星, E-mail: 作者简介:张辉红,女,硕士在读,研究方向:媒介蚊虫防治研究。E-mail: 基金资助:
        
               		ZHANG Huihong(
), ZHANG Chongxing(
)
			  
			
			
			
                
        
    
Received:2023-08-28
									
				
									
				
									
				
											Online:2024-02-20
									
				
											Published:2024-03-15
									
			Contact:
					ZHANG Chongxing, E-mail: 摘要:
蚊虫肠道共生菌是指在蚊虫肠道内与其长期共同生活、维持肠道微生态稳定的菌群,其参与调控蚊虫生理功能的多个方面。本文简要综述了肠道共生菌的影响因素和其在蚊虫营养、免疫、繁殖以及抗药性等方面的功能,为进一步的研究提供参考。
中图分类号:
张辉红, 张崇星. 蚊虫肠道共生菌功能的研究进展[J]. 热带病与寄生虫学, 2024, 22(1): 61-64.
ZHANG Huihong, ZHANG Chongxing. Research progress on the function of intestinal commensal bacteria in mosquitoes[J]. Journal of Tropical Diseases and Parasitology, 2024, 22(1): 61-64.
| [1] | 
                                              Giraud É, Varet H, Legendre R, et al. Mosquito-bacteria interactions during larval development trigger metabolic changes with carry-over effects on adult fitness[J]. Mol Ecol, 2022, 31(5):1444-1460. 
                                                                                              doi: 10.1111/mec.v31.5 URL  | 
                                        
| [2] | 
                                              Valzania L, Mattee MT, Strand MR, et al. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways[J]. Dev Biol, 2019, 454(1):85-95. 
                                                                                              doi: S0012-1606(19)30272-6 pmid: 31153832  | 
                                        
| [3] | 
                                              Harrison RE, Yang XS, Eum JH, et al. The mosquito Aedes aegypti requires a gut microbiota for normal fecundity, longevity and vector competence[J]. Commun Biol, 2023, 6(1):1154. 
                                                                                              doi: 10.1038/s42003-023-05545-z pmid: 37957247  | 
                                        
| [4] | 
                                              Yan JY, Kim CH, Chesser L, et al. Nutritional stress compromises mosquito fitness and antiviral immunity, while enhancing dengue virus infection susceptibility[J]. Commun Biol, 2023, 6(1):1123. 
                                                                                              doi: 10.1038/s42003-023-05516-4 pmid: 37932414  | 
                                        
| [5] | 
                                              Foster WA. Mosquito sugar feeding and reproductive energetics[J]. Annu Rev Entomol, 1995, 40:443-474. 
                                                                                              pmid: 7810991  | 
                                        
| [6] | 
                                              Moyes CL, Vontas J, Martins AJ, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans[J]. PLoS Negl Trop Dis, 2017, 11(7):e0005625. 
                                                                                              doi: 10.1371/journal.pntd.0005625 URL  | 
                                        
| [7] | 
                                              Dada N, Lol JC, Benedict AC, et al. Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus[J]. ISME J, 2019, 13(10):2447-2464. 
                                                                                              doi: 10.1038/s41396-019-0445-5 pmid: 31171859  | 
                                        
| [8] | 王姗姗, 赵龙玉, 全芯, 等. 疟疾传播阻断疫苗的研究进展[J]. 中国病原生物学杂志, 2022, 17(10):1229-1236. | 
| [9] | 
                                              茅范贞, 张莹舒, 杨友桂, 等. 淋巴丝虫入侵我国风险评估体系的建立及初步应用[J]. 中国媒介生物学及控制杂志, 2023, 34(2):176-181. 
                                                                                              doi: 10.11853/j.issn.1003.8280.2023.02.006  | 
                                        
| [10] | 
                                              Katak RM, Cintra AM, Burini BC, et al. Biotechnological potential of microorganisms for mosquito population control and reduction in vector competence[J]. Insects, 2023, 14(9):718. 
                                                                                              doi: 10.3390/insects14090718 URL  | 
                                        
| [11] | 朱莹, 梅启享, 曾悦. 肠道共生菌群在急性胰腺炎中作用的研究进展[J]. 国际消化病杂志, 2021, 41(6):418-420,426. | 
| [12] | Moszak M, Szulińska M, Bogdański P. You are what you eat-the relationship between diet, microbiota, and metabolic disorders-a review[J]. Nutrients, 2020, 12(4):E1096. | 
| [13] | 
                                              Tawidian P, Coon KL, Jumpponen A, et al. Host-environment interplay shapes fungal diversity in mosquitoes[J]. mSphere, 2021, 6(5):e0064621. 
                                                                                              doi: 10.1128/mSphere.00646-21 URL  | 
                                        
| [14] | 
                                              Seal M, Chatterjee S. Characterizations of larval gut bacteria of Anopheles subpictus grassi (1899) and their role in mosquito development in Hooghly, west Bengal, India[J]. Appl Biochem Biotechnol, 2022, 194(12):6140-6163. 
                                                                                              doi: 10.1007/s12010-021-03706-6  | 
                                        
| [15] | 
                                              Ranasinghe K, Gunathilaka N, Amarasinghe D, et al. Diversity of midgut bacteria in larvae and females of Aedes aegypti and Aedes albopictus from Gampaha District, Sri Lanka[J]. Parasit Vectors, 2021, 14(1):433. 
                                                                                              doi: 10.1186/s13071-021-04900-5 pmid: 34454583  | 
                                        
| [16] | 
                                              David MR, Santos LM, Vicente AC, et al. Effects of environment,dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan[J]. Mem Inst Oswaldo Cruz, 2016, 111(9):577-587. 
                                                                                              doi: 10.1590/0074-02760160238 URL  | 
                                        
| [17] | 
                                              Akorli J, Gendrin M, Pels NA, et al. Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana[J]. PLoS One, 2016, 11(6):e0157529. 
                                                                                              doi: 10.1371/journal.pone.0157529 URL  | 
                                        
| [18] | 
                                              Guégan M, Zouache K, Démichel C, et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions[J]. Microbiome, 2018, 6(1):49. 
                                                                                              doi: 10.1186/s40168-018-0435-2 pmid: 29554951  | 
                                        
| [19] | 
                                              Duguma D, Hall MW, Rugman-Jones P, et al. Developmental succession of the microbiome of Culex mosquitoes[J]. BMC Microbiol, 2015, 15:140. 
                                                                                              doi: 10.1186/s12866-015-0475-8 pmid: 26205080  | 
                                        
| [20] | 
                                              Juma EO, Allan BF, Kim CH, et al. Effect of life stage and pesticide exposure on the gut microbiota of Aedes albopictus and Culex pipiens L[J]. Sci Rep, 2020, 10(1):9489. 
                                                                                              doi: 10.1038/s41598-020-66452-5  | 
                                        
| [21] | 
                                              Wang YT, Shen RX, Xing D, et al. Metagenome sequencing reveals the midgut microbiota makeup of Culex pipiens quinquefasciatus and its possible relationship with insecticide resistance[J]. Front Microbiol, 2021, 12:625539. 
                                                                                              doi: 10.3389/fmicb.2021.625539 URL  | 
                                        
| [22] | 
                                              Onyango GM, Bialosuknia MS, Payne FA, et al. Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts[J]. Sci Rep, 2020, 10(1):19135. 
                                                                                              doi: 10.1038/s41598-020-76188-x  | 
                                        
| [23] | 
                                              Muturi EJ, Njoroge TM, Dunlap C, et al. Blood meal source and mixed blood-feeding influence gut bacterial community composition in Aedes aegypti[J]. Parasit Vectors, 2021, 14(1):83. 
                                                                                              doi: 10.1186/s13071-021-04579-8  | 
                                        
| [24] | Muturi EJ, Dunlap C, Ramirez JL, et al. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti[J]. FEMS Microbiol Ecol, 2019, 95(1). PMID:30357406. | 
| [25] | 
                                              Oliveira JH, Gonçalves RL, Lara FA, et al. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota[J]. PLoS Pathog, 2011, 7(3):e1001320. 
                                                                                              doi: 10.1371/journal.ppat.1001320 URL  | 
                                        
| [26] | 
                                              Wang Y, Gilbreath TM 3rd, Kukutla P, et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya[J]. PLoS One, 2011, 6(9):e24767. 
                                                                                              doi: 10.1371/journal.pone.0024767 URL  | 
                                        
| [27] | 
                                              Trzebny A, Slodkowicz-Kowalska A, Björkroth J, et al. Microsporidian infection in mosquitoes (Culicidae) is associated with gut microbiome composition and predicted gut microbiome functional content[J]. Microb Ecol, 2023, 85(1):247-263. 
                                                                                              doi: 10.1007/s00248-021-01944-z  | 
                                        
| [28] | 
                                              Short SM, Mongodin EF, MacLeod HJ, et al. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability[J]. PLoS Negl Trop Dis, 2017, 11(7):e0005677. 
                                                                                              doi: 10.1371/journal.pntd.0005677 URL  | 
                                        
| [29] | 
                                              Duron O, Gottlieb Y. Convergence of nutritional symbioses in obligate blood feeders[J]. Trends Parasitol, 2020, 36(10):816-825. 
                                                                                              doi: S1471-4922(20)30190-2 pmid: 32811753  | 
                                        
| [30] | 
                                              Bai L, Wang LL, Vega-Rodríguez J, et al. A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses[J]. Front Microbiol, 2019, 10:1580. 
                                                                                              doi: 10.3389/fmicb.2019.01580 URL  | 
                                        
| [31] | 
                                              Rodgers FH, Gendrin M, Wyer CAS, et al. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes[J]. PLoS Pathog, 2017, 13(5):e1006391. 
                                                                                              doi: 10.1371/journal.ppat.1006391 URL  | 
                                        
| [32] | 
                                              Hegedus D, Erlandson M, Gillott C, et al. New insights into peritrophic matrix synthesis, architecture, and function[J]. Annu Rev Entomol, 2009, 54:285-302. 
                                                                                              doi: 10.1146/annurev.ento.54.110807.090559 pmid: 19067633  | 
                                        
| [33] | 
                                              Erlandson MA, Toprak U, Hegedus DD. Role of the peritrophic matrix in insect-pathogen interactions[J]. J Insect Physiol, 2019, 117:103894. 
                                                                                              doi: 10.1016/j.jinsphys.2019.103894 URL  | 
                                        
| [34] | 
                                              Shao L, Devenport M, Jacobs-Lorena M. The peritrophic matrix of hematophagous insects[J]. Arch Insect Biochem Physiol, 2001, 47(2):119-125. 
                                                                                              doi: 10.1002/arch.v47:2 URL  | 
                                        
| [35] | 
                                              Talyuli OAC, Oliveira JHM, Bottino-Rojas V, et al. The Aedes aegypti peritrophic matrix controls arbovirus vector competence through HPx1, a heme-induced peroxidase[J]. PLoS Pathog, 2023, 19(2):e1011149. 
                                                                                              doi: 10.1371/journal.ppat.1011149 URL  | 
                                        
| [36] | 
                                              Terra WR. The origin and functions of the insect peritrophic membrane and peritrophic gel[J]. Arch Insect Biochem Physiol, 2001, 47(2):47-61. 
                                                                                              doi: 10.1002/arch.v47:2 URL  | 
                                        
| [37] | 
                                              Song XM, Wang MF, Dong L, et al. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis[J]. PLoS Pathog, 2018, 14(2):e1006899. 
                                                                                              doi: 10.1371/journal.ppat.1006899 URL  | 
                                        
| [38] | 
                                              Feng YB, Peng YQ, Song XM, et al. Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota[J]. Nat Microbiol, 2022, 7(5):707-715. 
                                                                                              doi: 10.1038/s41564-022-01099-8 pmid: 35437328  | 
                                        
| [39] | 
                                              Gao H, Bai L, Jiang YM, et al. A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase[J]. Nat Microbiol, 2021, 6(6):806-817. 
                                                                                              doi: 10.1038/s41564-021-00899-8  | 
                                        
| [40] | 
                                              Gulia-Nuss M, Elliot A, Brown MR, et al. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti[J]. J Insect Physiol, 2015, 82:8-16. 
                                                                                              doi: 10.1016/j.jinsphys.2015.08.001 pmid: 26255841  | 
                                        
| [41] | 
                                              Coon KL, Brown MR, Strand MR. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae)[J]. Parasit Vectors, 2016, 9(1):375. 
                                                                                              doi: 10.1186/s13071-016-1660-9 URL  | 
                                        
| [42] | 
                                              Ezemuoka LC, Akorli EA, Aboagye-Antwi F, et al. Mosquito midgut Enterobacter cloacae and Serratia marcescens affect the fitness of adult female Anopheles gambiae s. l[J]. PLoS One, 2020, 15(9):e0238931. 
                                                                                              doi: 10.1371/journal.pone.0238931 URL  | 
                                        
| [43] | 
                                              Dekanty A, Romero NM, Bertolin AP, et al. Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia[J]. PLoS Genet, 2010, 6(6):e1000994. 
                                                                                              doi: 10.1371/journal.pgen.1000994 URL  | 
                                        
| [44] | 
                                              Valzania L, Martinson VG, Harrison RE, et al. Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae[J]. PLoS Negl Trop Dis, 2018, 12(7):e0006638. 
                                                                                              doi: 10.1371/journal.pntd.0006638 URL  | 
                                        
| [45] | 
                                              Wang Y, Eum JH, Harrison RE, et al. Riboflavin instability is a key factor underlying the requirement of a gut microbiota for mosquito development[J]. Proc Natl Acad Sci USA, 2021, 118(15):e2101080118. 
                                                                                              doi: 10.1073/pnas.2101080118 URL  | 
                                        
| [46] | 
                                              Omoke D, Kipsum M, Otieno S, et al. Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota[J]. Malar J, 2021, 20(1):77. 
                                                                                              doi: 10.1186/s12936-021-03606-4  | 
                                        
| [47] | 
                                              Wang HY, Liu HM, Peng H, et al. A symbiotic gut bacterium enhances Aedes albopictus resistance to insecticide[J]. PLoS Negl Trop Dis, 2022, 16(3):e0010208. 
                                                                                              doi: 10.1371/journal.pntd.0010208 URL  | 
                                        
| [48] | 
                                              Dada N, Sheth M, Liebman K, et al. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors[J]. Sci Rep, 2018, 8(1):2084. 
                                                                                              doi: 10.1038/s41598-018-20367-4 pmid: 29391526  | 
                                        
| [49] | 
                                              Scates SS, O’Neal ST, Anderson TD. Bacteria-mediated modification of insecticide toxicity in the yellow fever mosquito, Aedes aegypti[J]. Pestic Biochem Physiol, 2019, 161:77-85. 
                                                                                              doi: S0048-3575(19)30420-1 pmid: 31685200  | 
                                        
| [50] | 
                                              Xu LT, Xu SJ, Sun LW, et al. Synergistic action of the gut microbiota in environmental RNA interference in a leaf beetle[J]. Microbiome, 2021, 9(1):98. 
                                                                                              doi: 10.1186/s40168-021-01066-1 pmid: 33947455  | 
                                        
| [1] | 林思宇, 陈芳, 罗语思, 张科. 猴痘病毒B.1谱系遗传分支、毒力基因及蛋白功能[J]. 热带病与寄生虫学, 2024, 22(1): 1-6. | 
| [2] | 岳文芳, 刘富强, 段红英, 夏梦芝, 蔡富文, 张斯钰. 2004—2022年湖南省学校肠道传染病突发公共卫生事件流行特征分析[J]. 热带病与寄生虫学, 2023, 21(3): 141-145,154. | 
| [3] | 张艺馨, 王龙江, 刘建成, 刘萍萍, 王用斌, 许艳, 闫歌, 卜秀芹, 张佃波, 李曰进, 张本光. 膳食结构对鞭虫感染人群肠道菌群的影响研究[J]. 热带病与寄生虫学, 2023, 21(1): 35-43. | 
| [4] | 朱维, 高雷明, 刘海霞, 米荣升, 李宗杰. 寄生虫对肠道菌群和宿主免疫功能影响的研究进展[J]. 热带病与寄生虫学, 2022, 20(6): 352-356. | 
| [5] | 张艺馨, 张本光. 人体蠕虫感染对肠道菌群影响的研究进展[J]. 热带病与寄生虫学, 2022, 20(5): 295-299. | 
| [6] | 胡玥, 詹荣健, 吕志跃. 医学蠕虫感染宿主的肠道微生物组学研究进展[J]. 热带病与寄生虫学, 2022, 20(4): 228-234. | 
| [7] | 类晶晶, 公茂庆, 刘丽娟. 媒介蚊虫生物杀虫剂杀虫机制及效果研究进展[J]. 热带病与寄生虫学, 2022, 20(4): 235-240. | 
| [8] | 崔栋, 肖娜, 钟冠南, 杨晓华, 顾嘉颖, 洪文腾. 深圳市盐田区人群肠道病毒及常见感染性腹泻病毒调查分析[J]. 热带病与寄生虫学, 2021, 19(6): 322-324,353. | 
| [9] | 吕文祥, 刘丽娟, 公茂庆. 昆虫肠道菌群的功能及检测方法研究进展[J]. 热带病与寄生虫学, 2021, 19(5): 284-. | 
| [10] | 江淑娜, 吴方伟, 李奔福, 严信留, 李建雄, 蔡璇, 彭佳, 王正青, 字金荣, 徐倩, 杨亚明. 2015—2019 年云南省常见肠道寄生虫病疾病负担研究[J]. 热带病与寄生虫学, 2021, 19(3): 146-150. | 
| [11] | 牛栋玲, 赵亚娥, 张宛钰, 郭宏松, 胡丽. 粉尘螨 HSP16-1 原核表达体系构建与温度应激响应功能鉴定[J]. 热带病与寄生虫学, 2021, 19(2): 64-69,81. | 
| [12] | 周瑞敏, 杨成运, 刘颖, 张红卫. 《肠道原虫检测 碘液染色涂片法》( WS/T 634-2018)标准解读[J]. 热带病与寄生虫学, 2020, 18(3): 142-144. | 
| [13] | 郭秀霞, 程鹏, 刘丽娟, 王海防, 王怀位, 张崇星. 基于核糖体 DNA 第二内转录间隔区基因的 9 种蚊虫分子鉴定[J]. 热带病与寄生虫学, 2020, 18(1): 12-16. | 
| [14] | 杜凌 张锦娟. 河南平顶山市人体重要肠道蠕虫流行现状调查[J]. 热带病与寄生虫学, 2019, 17(4): 218-221. | 
| [15] | 王惠娴,叶毅,徐培平,刘金元,赵昉. 流感病毒感染对肺肠功能的损伤及中药干预作用[J]. 热带病与寄生虫学, 2019, 17(3): 143-148. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||