
热带病与寄生虫学 ›› 2023, Vol. 21 ›› Issue (2): 82-87.doi: 10.3969/j.issn.1672-2302.2023.02.005
        
               		叶婧1( ), 周崇兴1, 林玫1, 先晓敏2, 梁小烟1, 张影坤1, 蓝如束3, 崔哲哲1(
), 周崇兴1, 林玫1, 先晓敏2, 梁小烟1, 张影坤1, 蓝如束3, 崔哲哲1( )
)
                  
        
        
        
        
    
收稿日期:2023-03-17
									
				
									
				
									
				
											出版日期:2023-04-20
									
				
											发布日期:2023-05-03
									
			通信作者:
					崔哲哲,E-mail: 作者简介:叶婧,女,硕士,主管技师,研究方向:传染病流行病学。E-mail: 基金资助:
        
               		YE Jing1( ), ZHOU Chong-xing1, LIN Mei1, XIAN Xiao-min2, LIANG Xiao-yan1, ZHANG Ying-kun1, LAN Ru-shu3, CUI Zhe-zhe1(
), ZHOU Chong-xing1, LIN Mei1, XIAN Xiao-min2, LIANG Xiao-yan1, ZHANG Ying-kun1, LAN Ru-shu3, CUI Zhe-zhe1( )
)
			  
			
			
			
                
        
    
Received:2023-03-17
									
				
									
				
									
				
											Online:2023-04-20
									
				
											Published:2023-05-03
									
			Contact:
					CUI Zhe-zhe, E-mail: 摘要:
目的 分析广西边境地区和非边境地区结核分枝杆菌(Mycobacterium tuberculosis,MTB)基因型和耐药相关基因的分布特征。方法 收集2015—2017年广西五个地区的结核病定点医疗机构的患者痰液标本,对边境地区(边境组)和非边境地区(非边境组)的MTB分离培养株进行对比研究。采用二代全基因组高通量测序技术对菌株进行基因分型,鉴定MTB菌株谱系,收集MTB耐药基因的变化信息。结果 研究共纳入646株菌株。边境组199株,其中Lineage 1有8株(占4.02%),Lineage 2有126株(占63.32%),Lineage 3有1株(占0.01%),Lineage 4有64株(占32.16%);非边境组447株,其中Lineage 1有4株(占0.89%),Lineage 2有299株(占66.89%),Lineage 4有144株(占32.21%),Lineage 3未见。边境组与非边境组基因型构成差异有统计学意义(χ2=9.754,P<0.05)。其中Lineage 1和Lineage 4.2基因型在边境组和非边境组的分布差异有统计学意义(χ2=5.763、4.833,P均<0.05)。有196株MTB分离株发生了耐药相关基因突变,其中边境组突变率(40.70%,81/199)高于非边境组(25.73%,115/447)(χ2=14.613,P<0.05)。突变率前5的耐药基因依次是katG(15.94%,103/646)、ropB(11.30%,73/646)、embB(6.04%,39/646)、rpsL(5.88%,38/646)和 rrsL(3.72%,24/646)。其中katG、ropB、rpsL基因在边境组的突变率均高于非边境组(χ2=5.716、9.603、6.979,P均<0.05),对应的katG315、rpoB450、rpsL43基因位点在边境组与非边境组的分布差异也均具有统计学意义(χ2=5.153、12.893、11.693,P均<0.05)。结论 广西MTB菌株出现 Lineage 1和Lineage 3谱系,可能从邻国传入,需要进一步研究。广西耐药相关基因位点突变的分布与MTB基因型构成有一定的相关性。
中图分类号:
叶婧, 周崇兴, 林玫, 先晓敏, 梁小烟, 张影坤, 蓝如束, 崔哲哲. 广西边境地区与非边境地区结核分枝杆菌基因组学分析[J]. 热带病与寄生虫学, 2023, 21(2): 82-87.
YE Jing, ZHOU Chong-xing, LIN Mei, XIAN Xiao-min, LIANG Xiao-yan, ZHANG Ying-kun, LAN Ru-shu, CUI Zhe-zhe. Genomic analysis of Mycobacterium tuberculosis in border and non-border areas of Guangxi Zhuang Autonomous Region[J]. Journal of Tropical Diseases and Parasitology, 2023, 21(2): 82-87.
 
												
												表3
广西边境组和非边境组MTB菌株基因型分布[n(%)]
| 谱系 | 边境组 | 非边境组 | χ2值 | P值 | 
|---|---|---|---|---|
| L1 | 8(4.02) | 4(0.89) | 5.763 | <0.05 | 
| L2 | 126(63.32) | 299(66.59) | 0.781 | >0.05 | 
| L2.1 | 11(5.53) | 29(6.49) | 0.219 | >0.05 | 
| L2.2 | 43(21.61) | 107(23.94) | 0.419 | >0.05 | 
| L2.3 | 72(36.18) | 163(36.47) | 0.005 | >0.05 | 
| L3 | 1(0.50) | 0(0) | >0.05* | |
| L4 | 64(32.16) | 144(32.21) | 0.000 | >0.05 | 
| L4.1.2 | 0(0) | 1(0.22) | >0.05* | |
| L4.2 | 9(4.52) | 43(9.62) | 4.833 | <0.05 | 
| L4.3 | 0(0) | 1(0.22) | >0.05* | |
| L4.4 | 37(18.59) | 57(12.75) | 3.779 | >0.05 | 
| L4.5 | 15(7.54) | 32(7.16) | 0.029 | >0.05 | 
| L4.7 | 1(0.50) | 2(0.45) | >0.05* | |
| L4.9 | 2(1.00) | 8(1.79) | 0.161 | >0.05 | 
 
												
												表4
MTB分离株耐药基因突变在广西边境与非边境地区的分布[n(%)]
| 药物 | 耐药基因 | 总菌株数 | 组别 | χ2值 | P值 | |
|---|---|---|---|---|---|---|
| 边境组 | 非边境组 | |||||
| 异烟肼 | katG | 103(15.94) | 42(21.11) | 61(13.65) | 5.716 | <0.05 | 
| fabG1 | 11(1.70) | 5(2.51) | 6(1.34) | 0.536 | >0.05 | |
| ahpC | 7(1.08) | 2(1.01) | 5(1.12) | <0.001 | >0.05 | |
| inhA | 3(0.46) | 1(0.50) | 2(0.45) | >0.05* | ||
| 利福平 | rpoB | 73(11.30) | 34(17.09) | 39(8.72) | 9.603 | <0.01 | 
| 乙胺丁醇 | embB | 39(6.04) | 15(7.54) | 24(5.37) | 1.142 | >0.05 | 
| embC | 14(2.17) | 8(4.02) | 6(1.34) | 3.480 | >0.05 | |
| 链霉素 | rpsL | 38(5.88) | 19(9.55) | 19(4.25) | 6.979 | <0.01 | 
| rrsL | 24(3.72) | 4(2.01) | 20(4.47) | 2.337 | >0.05 | |
| 吡嗪酰胺 | pncA | 20(3.10) | 9(4.52) | 11(2.46) | 1.951 | >0.05 | 
 
												
												表5
MTB分离株耐药基因突变位点在广西边境与非边境地区的分布
| 基因 | 位点 | 碱基的改变 | 氨基酸的改变 | 组别 | χ2值 | P值 | |
|---|---|---|---|---|---|---|---|
| 边境组[n(%)] | 非边境组[n(%)] | ||||||
| katG | 315 | AGC→ACC | 丝氨酸→苏氨酸 | 38(19.10) | 55(12.30) | 5.153 | <0.05 | 
| rpoB | 450 | TCG→TTG | 丝氨酸→亮氨酸 | 19(9.55) | 13(2.91) | 12.893 | <0.01 | 
| rpoB | 445 | CAC→CCC | 组氨酸→脯氨酸 | 7(3.52) | 12(2.68) | 0.335 | >0.05 | 
| CAC→TAC | 组氨酸→酪氨酸 | ||||||
| CAC→GAC | 组氨酸→天门冬氨酸 | ||||||
| CAC→AAC | 组氨酸→天门冬氨酸 | ||||||
| CAC→CGC | 组氨酸→精氨酸 | ||||||
| embB | 306 | ATG→GTG | 甲硫氨酸→缬氨酸 | 10(5.03) | 15(3.36) | 1.032 | >0.05 | 
| ATG→ATT | 甲硫氨酸→异亮氨酸 | ||||||
| ATG→ATC | 甲硫氨酸→异亮氨酸 | ||||||
| ATG→ATA | 甲硫氨酸→异亮氨酸 | ||||||
| rpsL | 43 | AAG→AGG | 赖氨酸→精氨酸 | 19(9.55) | 14(3.13) | 11.693 | <0.01 | 
| [1] | World Health Organization. Global Tuberculosis Report 2022.[R/OL]. (2022-2-27) [2023-2-10]. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022. | 
| [2] | Molina-Moya B, Agonafir M, Blanco S, et al. Microbead-based spoligotyping of Mycobacterium tuberculosis from Ziehl-Neelsen-stained microscopy preparations in Ethiopia[J]. Sci Rep, 2018, 8(1):3987. doi: 10.1038/s41598-018-22071-9 pmid: 29507363 | 
| [3] | Palomino JC, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis[J]. Antibiotics (Basel), 2014, 3(3):317-340. | 
| [4] | 梁小烟, 梁大斌, 黄敏莹, 等. 2013—2017年广西流动人口肺结核流行特征分析[J]. 现代预防医学, 2019, 46(15):2708-2712. | 
| [5] | 张洁, 任怡宣, 潘丽萍, 等. 全基因组测序在结核分枝杆菌研究中的应用[J]. 中国防痨杂志, 2020, 42(7):734-740. | 
| [6] | Ko DH, Lee EJ, Lee SK, et al. Application of next-generation sequencing to detect variants of drug-resistant Mycobacterium tuberculosis: genotype-phenotype correlation[J]. Ann Clin Microbiol Antimicrob, 2019, 18(1):2. doi: 10.1186/s12941-018-0300-y | 
| [7] | 蓝如束, 叶婧, 罗丹, 等. 基于PCR熔解曲线技术的结核分枝杆菌Spo1igotyping基因分型的临床应用研究[J]. 中国人兽共患病学报, 2021, 37(4):285-291,338. | 
| [8] | 洪创跃, 杨婷婷, 李金莉, 等. 深圳市耐多药结核分枝杆菌耐药基因突变特征分析[J]. 中国防痨杂志, 2020, 42(6):583-589. | 
| [9] | Liu QY, Luo T, Dong XR, et al. Genetic features of Mycobacterium tuberculosis modern Beijing sublineage[J]. Emerg Microbes Infect, 2016, 5(2):e14. | 
| [10] | Yang TT, Gan MY, Liu QY, et al. SAM-TB: a whole genome sequencing data analysis website for detection of Mycobacterium tuberculosis drug resistance and transmission[J]. Brief Bioinform, 2022, 23(2):bbac030. | 
| [11] | Walker TM, Kohl TA, Dmar SV, et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study[J]. Lancet Infect Dis, 2015, 15(10):1193-1202. doi: 10.1016/S1473-3099(15)00062-6 URL | 
| [12] | Rivière E, Heupink TH, Ismail N, et al. Capacity building for whole genome sequencing of Mycobacterium tuberculosis and bioinformatics in high TB burden countries[J]. Brief Bioinform, 2021, 22(4):bbaa246. | 
| [13] | Yang CG, Luo T, Shen X, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation[J]. Lancet Infect Dis, 2017, 17(3):275-284. doi: 10.1016/S1473-3099(16)30418-2 URL | 
| [14] | Merker M, Blin C, Mona S, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage[J]. Nat Genet, 2015, 47(3):242-249. doi: 10.1038/ng.3195 | 
| [15] | Ngabonziza JCS, Loiseau C, Marceau M, et al. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region[J]. Nat Commun, 2020, 11(1):2917. doi: 10.1038/s41467-020-16626-6 pmid: 32518235 | 
| [16] | Liu QY, Ma AJ, Wei LH, et al. China's tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis[J]. Nat Ecol Evol, 2018, 2(12):1982-1992. doi: 10.1038/s41559-018-0680-6 | 
| [17] | Stucki D, Brites D, Jeljeli L, et al. lineage 4 comprises globally distributed and geographically restricted sublineages[J]. Nat Genet, 2016, 48(12):1535-1543. doi: 10.1038/ng.3704 pmid: 27798628 | 
| [18] | Ni XM, Zhu CD, Li Q, et al. Epidemiology characteristics of the clonal complexes of Mycobacterium tuberculosis Lineage 4 in China[J]. Infection,Genetics and Evolution, 2020, 84:104363. | 
| [19] | Netikul T, Palittapongarnpim P, Thawornwattana Y, et al. Estimation of the global burden of Mycobacterium tuberculosis lineage 1[J]. Infect Genet Evol, 2021, 91:104802. | 
| [20] | Shuaib YA, Utpatel C, Kohl TA, et al. Origin and global expansion of Mycobacterium tuberculosis complex lineage 3[J]. Genes (Basel), 2022, 13(6):990. doi: 10.3390/genes13060990 URL | 
| [21] | 龙茜, 林玫, 蓝如束, 等. 广西壮族自治区边境与非边境地区耐药肺结核疫情及其影响因素[J]. 中国防痨杂志, 2019, 41(5):564-568. | 
| [22] | 韦珍. 结核分枝杆菌临床分离株基因分型与耐药性的检测[D]. 长春: 吉林大学, 2015. | 
| [23] | Hung NV, Ando H, Thuy TT, et al. Clonal expansion of Mycobacterium tuberculosis isolates and coexisting drug resistance in patients newly diagnosed with pulmonary tuberculosis in Hanoi,Vietnam[J]. BMC Res Notes, 2013, 6:444. doi: 10.1186/1756-0500-6-444 | 
| [24] | 蒋明霞, 王兆芬, 马斌忠, 等. 高海拔地区结核分枝杆菌耐药特征研究[J]. 中国人兽共患病学报, 2022, 38(3):203-209,216. | 
| [25] | 黄银燕, 吴亦斐, 贾庆军, 等. 杭州市1 731株结核分枝杆菌耐药状况分析[J]. 中国人兽共患病学报, 2022, 38(5):410-417. | 
| [26] | Sethi S, Hao YH, Brown SM, et al. Elucidation of drug resistance mutations in Mycobacterium tuberculosis isolates from North India by whole-genome sequencing[J]. J Glob Antimicrob Resist, 2020, 20:11-15. doi: 10.1016/j.jgar.2019.05.019 URL | 
| [27] | Kozhamkulov U, Akhmetova A, Rakhimova S, et al. Molecular characterization of rifampicin-and isoniazid-resistant Mycobacterium tuberculosis strains isolated in Kazakhstan[J]. Jpn J Infect Dis, 2011, 64(3):253-255. pmid: 21617314 | 
| [28] | Motavaf B, Keshavarz N, Ghorbanian F, et al. Detection of genomic mutations in katG and rpoB genes among multidrug-resistant Mycobacterium tuberculosis isolates from Tehran,Iran[J]. New Microbes New Infect, 2021, 41:100879. | 
| [29] | Jian JY, Yang XY, Yang J, et al. Evaluation of the GenoType MTBDRplus and MTBDRsl for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Beijing,China[J]. Infect Drug Resist, 2018, 11:1627-1634. doi: 10.2147/IDR URL | 
| [30] | 周奉, 李同心, 杨松, 等. 结核病短程治疗方案的研究进展[J]. 中国防痨杂志, 2023, 45(3):311-317. | 
| [31] | Campbell EA, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase[J]. Cell, 2001, 104(6):901-912. doi: 10.1016/s0092-8674(01)00286-0 pmid: 11290327 | 
| [32] | Zeng MC, Jia QJ, Tang LM. rpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis isolates from rural areas of Zhejiang,China[J]. J Int Med Res, 2021, 49(3):300060521997596. | 
| [1] | 林思宇, 陈芳, 罗语思, 张科. 猴痘病毒B.1谱系遗传分支、毒力基因及蛋白功能[J]. 热带病与寄生虫学, 2024, 22(1): 1-6. | 
| [2] | 胡莉萍, 方钟燎, 王学燕, 陈钦艳, 张陆娟, 蒋智华. 2011—2021年广西戊型病毒性肝炎流行病学特征分析[J]. 热带病与寄生虫学, 2024, 22(1): 27-30. | 
| [3] | 吕国丽, 万孝玲, 刘健, 区方奇, 韦海艳, 张伟尉, 林源, 唐雯茜, 石云良, 刘多, 孟军, 杨益超, 蒋智华. 2016—2020 年广西壮族自治区华支睾吸虫病监测结果分析[J]. 热带病与寄生虫学, 2021, 19(3): 121-126. | 
| [4] | 陈竹 王维斯 韦一鸣 王雪岩 任坤雨 胡琪 余才涛 李顺 吕樵岚 陈勇. 结核分枝杆菌热休克蛋白HtpG基因的原核表达与鉴定[J]. 热带病与寄生虫学, 2019, 17(4): 206-209,232. | 
| [5] | 陈勇,陈竹,张奇声,左益亮,张灿,李子昂,陈乔,夏惠. 重组结核杆菌热休克蛋白Acr2的原核表达、纯化及鉴定的研究[J]. 热带病与寄生虫学, 2017, 15(3): 131-. | 
| [6] | 常宏伟,李开春,马泰,杨卫,张凤,张丽梅,孙林,李娟,李伟. 六安地区结核分枝杆菌耐药基因katG 和rpoB 的突变特征[J]. 热带病与寄生虫学, 2014, 12(4): 187-189,193. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||