[1] |
Huq MA, Ashrafudoulla M, Rahman MM, et al. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: a review[J]. Polymers, 2022, 14(4):742.
|
[2] |
Tăbăran AF, Matea CT, Mocan T, et al. Silver nanoparticles for the therapy of tuberculosis[J]. Int J Nanomedicine, 2020,15:2231-2258.
|
[3] |
Nie P, Zhao Y, Xu H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: a review[J]. Ecotoxicol Environ Saf, 2023,253:114636.
|
[4] |
Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry[J]. Int J Nanomedicine, 2020,15:2555-2562.
|
[5] |
Li N, Georas S, Alexis N, et al. A work group report on ultrafine particles (American academy of allergy, asthma & immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects[J]. J Allergy Clin Immunol, 2016, 138(2):386-396.
|
[6] |
Li JY, Chang XR, Shang MT, et al. The crosstalk between DRP1-dependent mitochondrial fission and oxidative stress triggers hepatocyte apoptosis induced by silver nanoparticles[J]. Nanoscale, 2021, 13(28):12356-12369.
doi: 10.1039/d1nr02153b
pmid: 34254625
|
[7] |
Cameron SJ, Hosseinian F, Willmore WG. A current overview of the biological and cellular effects of nanosilver[J]. Int J Mol Sci, 2018, 19(7):2030.
|
[8] |
Yuan YG, Zhang YX, Liu SZ, et al. Multiple RNA profiling reveal epigenetic toxicity effects of oxidative stress by graphene oxide silver nanoparticles in-vitro[J]. Int J Nanomedicine, 2023,18:2855-2871.
|
[9] |
González-Palomo AK, Saldaña-Villanueva K, Cortés-García JD, et al. Effect of silver nanoparticles (AgNPs) exposure on microRNA expression and global DNA methylation in endothelial cells EA. hy926[J]. Environ Toxicol Pharmacol, 2021,81:103543.
|
[10] |
Klec C, Gutschner T, Panzitt K, et al. Involvement of long non-coding RNA HULC (highly up-regulated in liver cancer) in pathogenesis and implications for therapeutic intervention[J]. Expert Opin Ther Targets, 2019, 23(3):177-186.
|
[11] |
Shaker O, Mahfouz H, Salama A, et al. Long non-coding HULC and miRNA-372 as diagnostic biomarkers in hepatocellular carcinoma[J]. Rep Biochem Mol Biol, 2020, 9(2):230-240.
|
[12] |
Xin XR, Wu MY, Meng QY, et al. Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a[J]. Mol Cancer, 2018, 17(1):94.
|
[13] |
Andrews S, Krueger C, Mellado-Lopez M, et al. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B[J]. Nat Commun, 2023, 14(1):371.
doi: 10.1038/s41467-023-36019-9
pmid: 36690623
|
[14] |
Zhang HQ, Yuan Q, Pan ZJ, et al. Up-regulation of DNMT3b contributes to HOTAIRM1 silencing via DNA hypermethylation in cells transformed by long-term exposure to hydroquinone and workers exposed to benzene[J]. Toxicol Lett, 2020,322:12-19.
|
[15] |
Joshi K, Liu SH, Breslin S J P, et al. Mechanisms that regulate the activities of TET proteins[J]. Cell Mol Life Sci, 2022, 79(7):363.
doi: 10.1007/s00018-022-04396-x
pmid: 35705880
|
[16] |
Huang WX, Li H, Yu QS, et al. LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond[J]. J Exp Clin Cancer Res, 2022, 41(1):100.
doi: 10.1186/s13046-022-02319-z
pmid: 35292092
|
[17] |
Zhang DY, An XL, Li ZY, et al. Role of gene promoter methylation regulated by TETs and DNMTs in the overexpression of HLA-G in MCF-7 cells[J]. Exp Ther Med, 2019, 17(6):4709-4714.
doi: 10.3892/etm.2019.7481
pmid: 31086605
|
[18] |
Qian H, Zhao JQ, Yang XY, et al. TET1 promotes RXRα expression and adipogenesis through DNA demethylation[J]. Biochim Biophys Acta BBA Mol Cell Biol Lipds, 2021, 1866(6):158919.
|
[19] |
Ghafouri-Fard S, Abak A, Talebi SF, et al. Role of miRNA and lncRNAs in organ fibrosis and aging[J]. Biomedecine Pharmacother, 2021,143:112132.
|
[20] |
Li YQ, Sun N, Zhang CS, et al. Inactivation of lncRNA HOTAIRM1 caused by histone methyltransferase RIZ1 accelerated the proliferation and invasion of liver cancer[J]. Eur Rev Med Pharmacol Sci, 2020, 24(17):8767-8777.
|
[21] |
Tortella GR, Rubilar O, Durán N, et al. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment[J]. J Hazard Mater, 2020,390:121974.
|
[22] |
Chang XR, Niu SY, Shang MT, et al. ROS-Drp1-mediated mitochondria fission contributes to hippocampal HT22 cell apoptosis induced by silver nanoparticles[J]. Redox Biol, 2023,63:102739.
|
[23] |
Noga M, Milan J, Frydrych A, et al. Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs)-critical review: state of the art[J]. Int J Mol Sci, 2023, 24(6):5133.
|
[24] |
Skvortsov AN, Ilyechova EY, Puchkova LV. Chemical background of silver nanoparticles interfering with mammalian copper metabolism[J]. J Hazard Mater, 2023,451:131093.
|
[25] |
Sim W, Barnard RT, Blaskovich MAT, et al. Antimicrobial silver in medicinal and consumer applications: a patent review of the past decade (2007-2017)[J]. Antibiotics, 2018, 7(4):93.
|
[26] |
Shehata AM, Salem FMS, El-Saied EM, et al. Evaluation of the ameliorative effect of zinc nanoparticles against silver nanoparticle-induced toxicity in liver and kidney of rats[J]. Biol Trace Elem Res, 2022, 200(3):1201-1211.
|
[27] |
Wen L, Li MY, Lin XJ, et al. AgNPs aggravated hepatic steatosis, inflammation, oxidative stress, and epigenetic changes in mice with NAFLD induced by HFD[J]. Front Bioeng Biotechnol, 2022,10:912178.
|
[28] |
Hogg SJ, Beavis PA, Dawson MA, et al. Targeting the epigenetic regulation of antitumour immunity[J]. Nat Rev Drug Discov, 2020, 19(11):776-800.
|
[29] |
Farooqi AA, Fuentes-Mattei E, Fayyaz S, et al. Interplay between epigenetic abnormalities and deregulated expression of microRNAs in cancer[J]. Semin Cancer Biol, 2019,58:47-55.
|
[30] |
Chung FF, Herceg Z. The promises and challenges of toxico-epigenomics: environmental chemicals and their impacts on the epigenome[J]. Environ Health Perspect, 2020, 128(1):15001.
|
[31] |
Wu HT, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease[J]. Nat Rev Genet, 2023, 24(5):332-344.
|
[32] |
Gao M, Zhao BB, Chen MJ, et al. Nrf-2-driven long noncoding RNA ODRUL contributes to modulating silver nanoparticle-induced effects on erythroid cells[J]. Biomaterials, 2017,130:14-27.
|
[33] |
Ghafouri-Fard S, Esmaeili M, Taheri M, et al. Highly upregulated in liver cancer (HULC): an update on its role in carcinogenesis[J]. J Cell Physiol, 2020, 235(12):9071-9079.
doi: 10.1002/jcp.29765
pmid: 32372477
|
[34] |
Chen X, Song D. LPS promotes the progression of sepsis by activation of lncRNA HULC/miR-204-5p/TRPM7 network in HUVECs[J]. Biosci Rep, 2020, 40(6):BSR20200740.
|
[35] |
Liu AM, Sun YQ, Wang XJ, et al. DNA methylation is involved in pro-inflammatory cytokines expression in T-2 toxin-induced liver injury[J]. Food Chem Toxicol, 2019,132:110661.
|
[36] |
Zhang Y, Xue WL, Zhang WQ, et al. Histone methyltransferase G9a protects against acute liver injury through GSTP1[J]. Cell Death Differ, 2020, 27(4):1243-1258.
doi: 10.1038/s41418-019-0412-8
pmid: 31515511
|
[37] |
Zhou C, Huang C, Wang J, et al. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1α translation[J]. Oncogene, 2017, 36(27):3878-3889.
doi: 10.1038/onc.2017.14
pmid: 28263966
|