热带病与寄生虫学 ›› 2025, Vol. 23 ›› Issue (3): 176-182.doi: 10.20199/j.issn.1672-2302.2025.03.009
张辉红1,2(), 徐颢源1, 李文璇1,2, 郭秀霞1, 程鹏1, 王海防1, 刘丽娟1, 张崇星1,2(
)
收稿日期:
2024-12-06
出版日期:
2025-06-20
发布日期:
2025-08-08
通信作者:
张崇星,E-mail: chongxingzhang@aliyun.com
作者简介:
张辉红,女,硕士在读,研究方向:蚊媒防制研究。E-mail: huihongzh22@163.com
基金资助:
ZHANG Huihong1,2(), XU Haoyuan1, LI Wenxuan1,2, GUO Xiuxia1, CHENG Peng1, WANG Haifang1, LIU Lijuan1, ZHANG Chongxing1,2(
)
Received:
2024-12-06
Online:
2025-06-20
Published:
2025-08-08
Contact:
ZHANG Chongxing, E-mail: chongxingzhang@aliyun.com
摘要:
目的 探究淡色库蚊对残杀威抗性的表皮蛋白适应机制,明确差异表达蛋白在抗性与敏感株系抗性形成中的作用。方法 以实验室淡色库蚊敏感株系为亲本,连续20代残杀威筛选培育抗性株系,收集抗性与敏感株淡色库蚊各发育阶段样本。采用同位素标记相对和绝对定量技术(isobaric tags for relative and absolute quantification, iTRAQ)定量分析蛋白组,利用COG、GO和KEGG数据库进行功能注释及通路富集分析,并通过平行反应监测验证关键蛋白表达。结果 共鉴定出156个差异表达蛋白(59个上调,97个下调),淡色库蚊抗性株系中表皮结构成分蛋白(B0WIY4、B0W0L1)、几丁质结合蛋白及幼虫表皮蛋白显著上调;细胞骨架相关蛋白(B0WY76)、能量代谢蛋白(丙酮酸脱氢酶B0XA87)及核糖体蛋白(B0WQU6)显著下调。平行反应监测验证了肌动蛋白(B0WY76)等11类蛋白表达。结论 淡色库蚊对残杀威抗性与表皮蛋白差异表达和细胞骨架重构引起的表皮结构改变密切相关,这种结构改变可能延缓杀虫剂表皮渗透,从而增强对残杀威的抗性。
中图分类号:
张辉红, 徐颢源, 李文璇, 郭秀霞, 程鹏, 王海防, 刘丽娟, 张崇星. 淡色库蚊表皮蛋白对残杀威抗性的蛋白组学研究[J]. 热带病与寄生虫学, 2025, 23(3): 176-182.
ZHANG Huihong, XU Haoyuan, LI Wenxuan, GUO Xiuxia, CHENG Peng, WANG Haifang, LIU Lijuan, ZHANG Chongxing. Study on the epidermal adaptability mechanism of Culex pipiens pallens resistance to propoxur by comparative proteomics[J]. Journal of Tropical Diseases and Parasitology, 2025, 23(3): 176-182.
表1
残杀威抗性株与敏感株淡色库蚊差异表达蛋白GO功能注释聚类富集情况
GO功能分类 | 调节模式 | GO功能类别 | 差异蛋白数量 | 代表性通路/功能 | 富集倍数(Fold charge, FC) |
---|---|---|---|---|---|
生物过程 | 上调 | 氮化合物代谢过程 | 12 | 几丁质代谢过程 | 5.74 |
有机氮化合物代谢过程 | 11 | 糖基化合物代谢过程 | 3.91 | ||
碳水化合物衍生物代谢过程 | 7 | 核苷代谢过程 | 3.91 | ||
下调 | 细胞氮化合物生物合成过程 | 8 | 基于微管的运动 | 0.11 | |
细胞或亚细胞成分的运动 | 0.12 | ||||
分子功能 | 上调 | 几丁质结合蛋白 | 3 | 几丁质结合 | 6.13 |
下调 | 结构分子活性 | 18 | rRNA结合 | 0.12 | |
表皮结构成分 | 13 | 脂质转运体活性 | 0.13 | ||
表皮结构成分 | 0.19 | ||||
细胞构成 | 上调 | 细胞外区域 | 4 | 细胞外区域 | 3.36 |
下调 | 大分子复合体 | 12 | 蛋白质-DNA复合物 | 0.11 | |
核小体 | 0.11 | ||||
DNA包装复合体 | 0.11 |
表2
平行反应监测验证到的差异表达蛋白
蛋白COG类型 | 蛋白数据ID | 蛋白结构域描述 | 鉴定到的肽段序列 |
---|---|---|---|
细胞骨架 | B0WY76 | 肌动蛋白 | VAPEEHPILLTEAPLNPK |
B0X3L6 | 无脊椎动物原肌球蛋白 | ALLCEQQAR | |
能量产生与转换 | B0XA87 | 丙酮酸脱氢酶 | VFILGEEVAQYDGAYK |
B0WXM0 | 泛醌醇-细胞色素c还原酶复合物核心蛋白 | ADMVAAINGVSTSDVQSVAR | |
B0WUY1 | NADH泛醌氧化还原酶B8亚单位 | EFVSSQYAALK | |
B0WY92 | 细胞色素c氧化酶-亚单位VIb | FPNTNQTK | |
B0XGQ7 | 线粒体NADH脱氢酶铁硫蛋白8 | GAAVTLAHIFK | |
翻译、核糖体结构和生物发生 | B0W289 | 40S核糖体蛋白S21 | DHASIQINIVDVHPQTGR |
B0WQU6 | 核糖体蛋白 L37 | HTCSQCGYPSAK | |
B0WU22 | 酸性核糖体蛋白P1 | AANVDIEPYWPGLFAK | |
翻译后修饰,蛋白质周转,伴侣蛋白 | B0WTL4 | 蛋白酶体内肽酶复合物 | EAINLALSTLK |
B0WGF9 | 硫氧还蛋白还原酶1 | ENVEVYHAYYKPTEFFVPQR | |
氨基酸转运与代谢 | B0WZS2 | 吡咯啉-5-羧酸还原酶 | LAAQTVMGAGK |
B0X5I3 | 水解酶 | LVVNETSVFTR | |
B0WJC4 | d-氨基酸氧化酶 | LTTDPAGYPDPAWR | |
碳水化合物运输和代谢 | B0WEB5 | 甘油醛-3-磷酸脱氢酶 | LISWYDNEFGYSNR |
B0W5W4 | 丙糖磷酸异构酶 | ASITELCK | |
信号转导机制 | B0WEM1 | GTP结合蛋白128up | GGGGASEQGFEVSK |
B0WCT7 | 磷酸酶2Cβ | NLLQSIIR | |
B0W6W0 | 肌钙蛋白C | TGSISSETVAEILR | |
细胞内运输、分泌和囊泡运输 | B0WUR5 | 分泌载体相关膜蛋白 | ATVQSQFNQNR |
核苷酸转运和代谢 | B0X890 | 尿苷磷酸化酶 | LPAGTQLQDISAFSYR |
辅酶转运与代谢 | B0W244 | 腺苷甲硫氨酸合酶 | DTVQHIGYDDSSK |
脂质运输和代谢 | B0WY25 | 3-羟基异丁酰辅酶a水解酶 | SLVEAGPVPESR |
[1] | 孟凤霞, 靳建超, 陈云, 等. 我国淡色库蚊/致倦库蚊对常用化学杀虫剂的抗药性[J]. 中国媒介生物学及控制杂志, 2011, 22(6):517-520,528. |
[2] | Liu HM, Yang PP, Cheng P, et al. Resistance level of mosquito species (Diptera: Culicidae) from Shandong Province,China[J]. Int J Insect Sci, 2015,7:47-52. |
[3] | Liu HM, Xie LH, Cheng P, et al. Trends in insecticide resistance in Culex pipiens pallens over 20 years in Shandong, China[J]. Parasit Vectors, 2019, 12(1):167. |
[4] | 王伟, 宋富成, 姜洪荣, 等. 2019年青岛市居民区淡色库蚊幼虫对5种杀虫剂的抗性调查[J]. 中华卫生杀虫药械, 2020, 26(6):585-586. |
[5] | Nkya TE, Akhouayri I, Kisinza W, et al. Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects[J]. Insect Biochem Mol Biol, 2013, 43(4):407-416. |
[6] | Hemingway J, Hawkes NJ, McCarroll L, et al. The molecular basis of insecticide resistance in mosquitoes[J]. Insect Biochem Mol Biol, 2004, 34(7):653-665. |
[7] | Fonseca I, Quiñones ML. Resistencia a insecticidas en mosquitos (Diptera: Culicidae): mecanismos,detección y vigilancia en salud pública[J]. Rev Colomb Entomol, 2005, 31(2):107-115. |
[8] | 汤星星, 黄晓丹, 王文倩, 等. 2023年山东省微山湖流域淡色库蚊抗药性调查[J]. 中华卫生杀虫药械, 2024, 30(2):118-121. |
[9] | 李许桑妮, 闫冀焕, 陈翰林, 等. 蚊虫转录组学研究进展[J]. 寄生虫与医学昆虫学报, 2019, 26(3):199-208. |
[10] | 吴恙, 周腾飞, 赖泽钿, 等. 蚊虫组学研究进展[J]. 环境昆虫学报, 2020, 42(4):789-797. |
[11] | 刘福岩, 张倩, 郭秀霞, 等. 利用蛋白组学解析淡色库蚊对氯氰菊酯的抗性机制[J]. 中国血吸虫病防治杂志, 2021, 33(2):189-194. |
[12] | Zhang CX, Shi QQ, Li T, et al. Comparative proteomics reveals mechanisms that underlie insecticide resistance in Culex pipiens pallens Coquillett[J]. PLoS Negl Trop Dis, 2021, 15(3):e0009237. |
[13] | Zhang CX, Guo XX, Li T, et al. New insights into cypermethrin insecticide resistance mechanisms of Culex pipiens pallens by proteome analysis[J]. Pest Manag Sci, 2022, 78(11):4579-4588. |
[14] | Zhou YH, Badgett MJ, Orlando R, et al. Proteomics reveals localization of cuticular proteins in Anopheles gambiae[J]. Insect Biochem Mol Biol, 2019,104:91-105. |
[15] | Liu WJ, Cheng P, An S, et al. Chromosome-level assembly of Culex pipiens molestus and improved reference genome of Culex pipiens pallens (Culicidae, Diptera)[J]. Mol Ecol Resour, 2023, 23(2):486-498. |
[16] | Wang WJ, Lv Y, Fang FJ, et al. Identification of proteins associated with pyrethroid resistance by iTRAQ-based quantitative proteomic analysis in Culex pipiens pallens[J]. Parasit Vectors, 2015,8:95. |
[17] | Stone BF, Brown AW. Mechanisms of resistance to fenthion in Culex pipiens fatigans Wied[J]. Bull World Health Organ, 1969, 40(3):401-408. |
[18] | Cornman RS. Molecular evolution of Drosophila cuticular protein genes[J]. PLoS One, 2009, 4(12):e8345. |
[19] |
Vontas J, David JP, Nikou D, et al. Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization[J]. Insect Mol Biol, 2007, 16(3):315-324.
pmid: 17433071 |
[20] | Nkya TE, Poupardin R, Laporte F, et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions[J]. Parasit Vectors, 2014,7:480. |
[21] | Gregory R, Darby AC, Irving H, et al. A de novo expression profiling of Anopheles funestus, malaria vector in Africa, using 454 pyrosequencing[J]. PLoS One, 2011, 6(2):e17418. |
[22] |
Huang Y, Guo Q, Sun XH, et al. Culex pipiens pallens cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix[J]. Parasit Vectors, 2018, 11(1):6.
doi: 10.1186/s13071-017-2567-9 pmid: 29301564 |
[23] |
Yahouédo GA, Chandre F, Rossignol M, et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae[J]. Sci Rep, 2017, 7(1):11091.
doi: 10.1038/s41598-017-11357-z pmid: 28894186 |
[24] | Balabanidou V, Kefi M, Aivaliotis M, et al. Mosquitoes cloak their legs to resist insecticides[J]. Proc Biol Sci,2019, 286(1907):20191091. |
[25] | Awolola TS, Oduola OA, Strode C, et al. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria[J]. Trans R Soc Trop Med Hyg, 2009, 103(11):1139-1145. |
[26] | Sun XL, Guo JX, Ye WY, et al. Cuticle genes CpCPR63 and CpCPR47 may confer resistance to deltamethrin in Culex pipiens pallens[J]. Parasitol Res, 2017, 116(8):2175-2179. |
[27] | Kasai S, Komagata O, Itokawa K, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism[J]. PLoS Negl Trop Dis, 2014, 8(6):e2948. |
[28] |
Apperson CS, Georghiou GP. Mechanisms of resistance to organophosphorus insecticides in Culex tarsalis[J]. J Econ Entomol, 1975, 68(2):153-157.
pmid: 1127166 |
[29] |
Balabanidou V, Kampouraki A, MacLean M, et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2016, 113(33):9268-9273.
doi: 10.1073/pnas.1608295113 pmid: 27439866 |
[30] | Vannini L, Reed TW, Willis JH. Temporal and spatial expression of cuticular proteins of Anopheles gambiae implicated in insecticide resistance or differentiation of M/S incipient species[J]. Parasit Vectors, 2014,7:24. |
[31] | Andersen SO, Hojrup P, Roepstorff P. Insect cuticular proteins[J]. Insect Biochem Mol Biol, 1995, 25(2):153-176. |
[32] | Koganemaru R, Miller DM, Adelman ZN. Robust cuticular penetration resistance in the common bed bug (Cimex lectularius L.) correlates with increased steady-state transcript levels of CPR-type cuticle protein genes[J]. Pestic Biochem Physiol, 2013, 106(3):190-197. |
[33] | Karouzou MV, Spyropoulos Y, Iconomidou VA, et al. Drosophila cuticular proteins with the R&R consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences[J]. Insect Biochem Mol Biol, 2007, 37(8):754-760. |
[1] | 类晶晶, 李亚平, 娄紫微, 臧传慧, 程鹏, 公茂庆, 刘丽娟. 不同植物精油对淡色库蚊生物活性的筛选及成分分析[J]. 热带病与寄生虫学, 2024, 22(2): 97-101. |
[2] | 马荣, 刘丽娟. 低温胁迫下淡色库蚊体内蛋白表达的双向电泳分析[J]. 热带病与寄生虫学, 2020, 18(1): 17-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||