热带病与寄生虫学 ›› 2024, Vol. 22 ›› Issue (5): 294-300.doi: 10.20199/j.issn.1672-2302.2024.05.008
焦群芳(), 李惠芳, 郑冬燕, 黄豪, 钟清华, 蔡晓楠, 凌晓璇(
), 刘林华
收稿日期:
2024-06-12
出版日期:
2024-10-20
发布日期:
2024-11-15
通信作者:
凌晓璇, E-mail: xiaoxuanling@163.com
作者简介:
焦群芳,女,硕士在读,研究方向:环境与职业健康。E-mail: 基金资助:
JIAO Qunfang(), LI Huifang, ZHENG Dongyan, HUANG Hao, ZHONG Qinghua, CAI Xiaonan, LING Xiaoxuan(
), LIU Linhua
Received:
2024-06-12
Online:
2024-10-20
Published:
2024-11-15
Contact:
LING Xiaoxuan, E-mail: xiaoxuanling@163.com
摘要:
目的 探讨银纳米颗粒(silver nanoparties, AgNPs)对DNA去甲基化酶10-11易位蛋白(ten-eleven translocation proteins, TETs)家族表达的影响及其对长链非编码RNA(long non-coding RNA, lncRNA)肝癌高表达转录本(high up-regulated in liver cancer, HULC)表达调控的分子机制。方法 选取浓度为0(空白对照组)、5、10和20 μg/mL的AgNPs处理人正常肝细胞系(LO2细胞),同时选用10 μg/mL的AgNPs分别与DNA甲基化酶抑制剂5-氮杂胞嘧啶核苷(5-azacitidine, 5-azaC)和组蛋白去乙酰化酶抑制剂曲古抑菌素A(trichostatin A, TSA)联合处理LO2细胞24 h。采用qRT-PCR检测lncRNA HULC、HOTAIRM1、H19、MALAT1以及DNA甲基转移酶(DNA methyltransferases, DNMTs)家族、TETs家族的mRNA表达情况,免疫印迹实验(western blot, WB)检测DNMTs家族、TETs家族的蛋白表达情况,并且利用siRNA干扰技术沉默TET1的表达,进一步探讨TET1与lncRNA HULC的调控关系。结果 qRT-PCR结果显示,相较于空白对照组,各浓度组中H19的mRNA表达均下调(t=7.250、6.876、5.077,P均<0.05),20 μg/mL AgNPs组lncRNA HULC的mRNA表达上调,HOTAIRM1表达下调(t=12.250、12.850,P均<0.05)。TSA干预后lncRNA HULC的表达上调,H19表达下调(t=12.970、12.950,P均<0.05)。相较于对照组,20 μg/mL AgNPs组中的TET1和TET3表达上调(t=6.909、15.551,P均<0.05)。TSA干预后TET1的表达上调,TET3表达下调(t=17.224、3.602,P<0.05)。WB结果显示,相较于空白对照组,各浓度组的DNMT1和DNMT3a蛋白表达均上调,而DNMT3b蛋白表达均下调(t=5.968、2.518、4.010,t=8.983、16.230、14.260,t=23.000、41.630、49.300;P均<0.05)。5-azaC和TSA组分别干预后DNMT1蛋白表达均下调,DNMT3a蛋白表达均上调(t=3.111、3.695,t=30.740、62.790;P均<0.05),而DNMT3b表达分别下调和上调(t=7.024、3.372,P均<0.05)。各浓度组TET1的蛋白表达均上调(t=5.869、7.519、10.470,P均<0.05)。成功构建沉默TET1的细胞模型,si-TET1-3组(TET1基因沉默组)TET1蛋白和lncRNA HULC的mRNA表达均较si-NC组(沉默对照组)降低(t=3.297、4.708,P均<0.05)。结论 随着AgNPs浓度的增加,细胞中lncRNA HULC和DNA去甲基化酶TET1的表达均上调,添加5-azaC和TSA干预后可有效改变其表达水平,表明lncRNA HULC极大可能受到DNA甲基化的影响。
中图分类号:
焦群芳, 李惠芳, 郑冬燕, 黄豪, 钟清华, 蔡晓楠, 凌晓璇, 刘林华. DNA去甲基化酶TET1促进银纳米颗粒诱导的LO2细胞中长链非编码RNA HULC的表达[J]. 热带病与寄生虫学, 2024, 22(5): 294-300.
JIAO Qunfang, LI Huifang, ZHENG Dongyan, HUANG Hao, ZHONG Qinghua, CAI Xiaonan, LING Xiaoxuan, LIU Linhua. Upregulation of TET1 contributes to the activation of lncRNA HULC in LO2 cells treated with silver nanoparticles[J]. Journal of Tropical Diseases and Parasitology, 2024, 22(5): 294-300.
表1
qRT-PCR引物序列
基因 | 上游引物(5′-3′) | 下游引物(5′-3′) |
---|---|---|
lncRNA HULC | AACAGACCAAAGCATCAAGCAA | CAAATTTGCCACAGGTTGAACAC |
HOTAIRM1 | GAACTGGCGAGAGGACGAAT | GTGGGGACTATGGCTGGTTT |
H19 | GAACTGGCGAGAGGACGAAT | GTGGGGACTATGGCTGGTTT |
MALAT1 | TTTGTTCATTTCTGGTGGTGGG | TAAGACCAAGGGAGGGGAGAG |
TET1 | GCCTCCATCAGACGAACCCCTAT | ACTCAATCAAAACCGAGCCGTG |
TET2 | GGAAGCCAGAATAGTCGTGTGAGTC | TCTGAAGGAGCCCAGAGAGAGAAG |
TET3 | AGCGCTAAAGCAAGGAAAGA | AAGCAAGTCTGGCTGGGTTT |
GAPDH | GGAGTCAACGGATTTGGTCGTATTG | TCTCGCTCCTGGAAGATGGTGAT |
[1] | Huq MA, Ashrafudoulla M, Rahman MM, et al. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: a review[J]. Polymers, 2022, 14(4):742. |
[2] | Tăbăran AF, Matea CT, Mocan T, et al. Silver nanoparticles for the therapy of tuberculosis[J]. Int J Nanomedicine, 2020,15:2231-2258. |
[3] | Nie P, Zhao Y, Xu H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: a review[J]. Ecotoxicol Environ Saf, 2023,253:114636. |
[4] | Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry[J]. Int J Nanomedicine, 2020,15:2555-2562. |
[5] | Li N, Georas S, Alexis N, et al. A work group report on ultrafine particles (American academy of allergy, asthma & immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects[J]. J Allergy Clin Immunol, 2016, 138(2):386-396. |
[6] |
Li JY, Chang XR, Shang MT, et al. The crosstalk between DRP1-dependent mitochondrial fission and oxidative stress triggers hepatocyte apoptosis induced by silver nanoparticles[J]. Nanoscale, 2021, 13(28):12356-12369.
doi: 10.1039/d1nr02153b pmid: 34254625 |
[7] | Cameron SJ, Hosseinian F, Willmore WG. A current overview of the biological and cellular effects of nanosilver[J]. Int J Mol Sci, 2018, 19(7):2030. |
[8] | Yuan YG, Zhang YX, Liu SZ, et al. Multiple RNA profiling reveal epigenetic toxicity effects of oxidative stress by graphene oxide silver nanoparticles in-vitro[J]. Int J Nanomedicine, 2023,18:2855-2871. |
[9] | González-Palomo AK, Saldaña-Villanueva K, Cortés-García JD, et al. Effect of silver nanoparticles (AgNPs) exposure on microRNA expression and global DNA methylation in endothelial cells EA. hy926[J]. Environ Toxicol Pharmacol, 2021,81:103543. |
[10] | Klec C, Gutschner T, Panzitt K, et al. Involvement of long non-coding RNA HULC (highly up-regulated in liver cancer) in pathogenesis and implications for therapeutic intervention[J]. Expert Opin Ther Targets, 2019, 23(3):177-186. |
[11] | Shaker O, Mahfouz H, Salama A, et al. Long non-coding HULC and miRNA-372 as diagnostic biomarkers in hepatocellular carcinoma[J]. Rep Biochem Mol Biol, 2020, 9(2):230-240. |
[12] | Xin XR, Wu MY, Meng QY, et al. Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a[J]. Mol Cancer, 2018, 17(1):94. |
[13] |
Andrews S, Krueger C, Mellado-Lopez M, et al. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B[J]. Nat Commun, 2023, 14(1):371.
doi: 10.1038/s41467-023-36019-9 pmid: 36690623 |
[14] | Zhang HQ, Yuan Q, Pan ZJ, et al. Up-regulation of DNMT3b contributes to HOTAIRM1 silencing via DNA hypermethylation in cells transformed by long-term exposure to hydroquinone and workers exposed to benzene[J]. Toxicol Lett, 2020,322:12-19. |
[15] |
Joshi K, Liu SH, Breslin S J P, et al. Mechanisms that regulate the activities of TET proteins[J]. Cell Mol Life Sci, 2022, 79(7):363.
doi: 10.1007/s00018-022-04396-x pmid: 35705880 |
[16] |
Huang WX, Li H, Yu QS, et al. LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond[J]. J Exp Clin Cancer Res, 2022, 41(1):100.
doi: 10.1186/s13046-022-02319-z pmid: 35292092 |
[17] |
Zhang DY, An XL, Li ZY, et al. Role of gene promoter methylation regulated by TETs and DNMTs in the overexpression of HLA-G in MCF-7 cells[J]. Exp Ther Med, 2019, 17(6):4709-4714.
doi: 10.3892/etm.2019.7481 pmid: 31086605 |
[18] | Qian H, Zhao JQ, Yang XY, et al. TET1 promotes RXRα expression and adipogenesis through DNA demethylation[J]. Biochim Biophys Acta BBA Mol Cell Biol Lipds, 2021, 1866(6):158919. |
[19] | Ghafouri-Fard S, Abak A, Talebi SF, et al. Role of miRNA and lncRNAs in organ fibrosis and aging[J]. Biomedecine Pharmacother, 2021,143:112132. |
[20] | Li YQ, Sun N, Zhang CS, et al. Inactivation of lncRNA HOTAIRM1 caused by histone methyltransferase RIZ1 accelerated the proliferation and invasion of liver cancer[J]. Eur Rev Med Pharmacol Sci, 2020, 24(17):8767-8777. |
[21] | Tortella GR, Rubilar O, Durán N, et al. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment[J]. J Hazard Mater, 2020,390:121974. |
[22] | Chang XR, Niu SY, Shang MT, et al. ROS-Drp1-mediated mitochondria fission contributes to hippocampal HT22 cell apoptosis induced by silver nanoparticles[J]. Redox Biol, 2023,63:102739. |
[23] | Noga M, Milan J, Frydrych A, et al. Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs)-critical review: state of the art[J]. Int J Mol Sci, 2023, 24(6):5133. |
[24] | Skvortsov AN, Ilyechova EY, Puchkova LV. Chemical background of silver nanoparticles interfering with mammalian copper metabolism[J]. J Hazard Mater, 2023,451:131093. |
[25] | Sim W, Barnard RT, Blaskovich MAT, et al. Antimicrobial silver in medicinal and consumer applications: a patent review of the past decade (2007-2017)[J]. Antibiotics, 2018, 7(4):93. |
[26] | Shehata AM, Salem FMS, El-Saied EM, et al. Evaluation of the ameliorative effect of zinc nanoparticles against silver nanoparticle-induced toxicity in liver and kidney of rats[J]. Biol Trace Elem Res, 2022, 200(3):1201-1211. |
[27] | Wen L, Li MY, Lin XJ, et al. AgNPs aggravated hepatic steatosis, inflammation, oxidative stress, and epigenetic changes in mice with NAFLD induced by HFD[J]. Front Bioeng Biotechnol, 2022,10:912178. |
[28] | Hogg SJ, Beavis PA, Dawson MA, et al. Targeting the epigenetic regulation of antitumour immunity[J]. Nat Rev Drug Discov, 2020, 19(11):776-800. |
[29] | Farooqi AA, Fuentes-Mattei E, Fayyaz S, et al. Interplay between epigenetic abnormalities and deregulated expression of microRNAs in cancer[J]. Semin Cancer Biol, 2019,58:47-55. |
[30] | Chung FF, Herceg Z. The promises and challenges of toxico-epigenomics: environmental chemicals and their impacts on the epigenome[J]. Environ Health Perspect, 2020, 128(1):15001. |
[31] | Wu HT, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease[J]. Nat Rev Genet, 2023, 24(5):332-344. |
[32] | Gao M, Zhao BB, Chen MJ, et al. Nrf-2-driven long noncoding RNA ODRUL contributes to modulating silver nanoparticle-induced effects on erythroid cells[J]. Biomaterials, 2017,130:14-27. |
[33] |
Ghafouri-Fard S, Esmaeili M, Taheri M, et al. Highly upregulated in liver cancer (HULC): an update on its role in carcinogenesis[J]. J Cell Physiol, 2020, 235(12):9071-9079.
doi: 10.1002/jcp.29765 pmid: 32372477 |
[34] | Chen X, Song D. LPS promotes the progression of sepsis by activation of lncRNA HULC/miR-204-5p/TRPM7 network in HUVECs[J]. Biosci Rep, 2020, 40(6):BSR20200740. |
[35] | Liu AM, Sun YQ, Wang XJ, et al. DNA methylation is involved in pro-inflammatory cytokines expression in T-2 toxin-induced liver injury[J]. Food Chem Toxicol, 2019,132:110661. |
[36] |
Zhang Y, Xue WL, Zhang WQ, et al. Histone methyltransferase G9a protects against acute liver injury through GSTP1[J]. Cell Death Differ, 2020, 27(4):1243-1258.
doi: 10.1038/s41418-019-0412-8 pmid: 31515511 |
[37] |
Zhou C, Huang C, Wang J, et al. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1α translation[J]. Oncogene, 2017, 36(27):3878-3889.
doi: 10.1038/onc.2017.14 pmid: 28263966 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||